
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

448
All Rights Reserved © 2016 IJARTET

Non Volatile Memory Host Controller Interface

Performance Analysis
Vinod T.

Computer Science Department, Rohini College of Engineering and Technology,

Tamil Nadu, India.

vinod.eng@gmail.com

Abstract— Hard Disk Drives (HDD) are predominantly used in

datacenters to store and retrieve data created by individuals or

businesses. Due to the performance limitations of HDD, Solid

State Drives (SSD) has emerged as an alternative storage option.

SSD uses Non Volatile Memory (NVM) to provide faster random

access and data transfer rates than electromechanical based

HDD. But the host interface to SSD remains a performance

bottleneck and also the Input Output (IO) subsystem causes

unnecessary latencies, translations in the Read/Write commands.

In order to completely utilize the performance of the NVM

present in a SSD, a Non Volatile Memory Subsystem has been

recently designed. The communication to this new subsystem is

through PCI Express interface and the command set is based on

NVM Express (NVMe) Specification and the host controller

interface is based on Non Volatile Memory Host Controller

Interface (NVMHCI). This new subsystem exploits the

parallelism and low-latency features of emerging NVMs and

demonstrates better performance than SSD and HDD. In many

cases, the maximum IO performance of the used memory

technology is not achieved due to limitations imposed by the

software device driver that interfaces the storage card with the

host’s operating system. The system performance bottlenecks

and overhead of using the standard state-of-the-art Non Volatile

Memory Host Controller Interface (NVMHCI) are analysed and

investigated.

Keywords— HDD, SSD, NVM, NVMe and NVMHCI

I. INTRODUCTION

We have become information dependents of the

twenty-first century, living in an on-command, on-

demand world that means we need information

when and where it is required. Data created by

individuals or businesses must be stored so that it is

easily accessible for further processing. In a

computing environment, devices designed for

storing data are termed storage devices or simply

storage. The type of storage used varies based on

the type of data and the rate at which it is created

and used. Devices such as memory in a cell phone

or digital camera, DVDs, CD-ROMs, and hard

disks in personal computers are examples of storage

devices. Businesses have several options available

for storing data including internal hard disks,

external disk arrays and tapes. The types of storage

devices used in the workstations and servers as well

as their corresponding host controller interface are

briefed in the subsequent sections.

A. Hard Disk Drive

A hard disk drive (HDD) uses a rapidly moving

arm to read and write data across a flat platter

coated with magnetic particles. Data is transferred

from the magnetic platter through the read write

head to the computer. Several platters are

assembled together with the read write head and

controller, most commonly referred to as a hard

disk drive. Data can be recorded and erased on a

magnetic disk any number of times. The types of

interfaces of HDD currently being used are SATA

and SAS. The host controller interfaces which are

predominantly used are Advanced Host Controller

Interface (AHCI), Serial Attached SCSI (SAS)

Controllers, and Fiber Channel (FC) Controllers.

B. Solid State Drive

Flash based solid-state drives (SSDs) are used as

storage media for delivering ultra-high performance

for mission-critical applications. Solid-state drives

utilize flash memory to store and retrieve data.

Flash drives have no moving parts, and leverage

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

449
All Rights Reserved © 2016 IJARTET

semiconductor-based block storage

devices, resulting in minimized response time and

less power requirements to run. Flash drives use

non-volatile semiconductor memory to support

persistent storage and they use either single-level

cell (SLC) or multi-level cell (MLC) to store bits on

each memory cell. Flash drives have been tested

and qualified to withstand the intense workloads of

high-end enterprise storage applications.

C. PCI Express

PCI Express based SSD is the recent innovation in the

field of storage. The main factors for the wide-spread adoption

of PCIe as an interface for SSDs are listed below. PCIe

provides high performance and it is a full-duplex system,

which can support multiple outstanding requests, and out of

order processing. It has a scalable port width ranging from

single lane (x1) to sixteen lanes (x16). It also has scalable link

speeds which include 2.5GTps, 5GTps and 8GTps. PCIe has

less number of pins hence, lower area and lower cost. It is a

direct attach to CPU subsystem hence, it eliminates HBA cost.

PCIe also provides effective Power Management.

II. EXISTING SYSTEM

In the existing system, high performance SSDs

are connected directly to the host’s internal I/O

architecture through the PCI Express bus, a serial

interface that can utilize multiple lanes in parallel

and can achieve data rates higher than 1GB/s.

Regarding the interface with the user applications at

the host system and to ensure transition

transparency, meaning no changes at the user-level,

the OS software layers and I/O stack used for the

HDDs remain the same and the differences are

encapsulated by an emulation software layer, called

the Flash Translation Layer (FTL), which is added

in the SSD’s storage controller. A major drawback

of this approach is that, since most contemporary

OS storage layers and I/O stacks are developed and

optimized based on functional assumptions that are

valid for mechanical disks only, the SSDs are

prevented from reaching their full potential

performance.

Fig 1 Existing System

The applications at the user level access storage devices

through standard system calls to the file system. The kernel

forwards these requests to the virtual file system (VFS) layer,

which interfaces generic file system calls to file system-

specific functions. The file system is aware of the logical

layout of data and metadata on the storage medium and sends

read and write requests of fixed-size data blocks. The block

layer provides an abstract interface which conceals the

differences between storage devices of different technologies.

The software layer is the largest contributor to the overall

execution time. The software layer includes but not limited to

the I/O software stack. For example, in Linux, any I/O request

needs to go through a software layer called block layer, this

layer is responsible of scheduling I/O requests, merging

requests and finally submitting it to the corresponding

controller device driver (e.g. AHCI, FC). When the response

arrives, it has to complete the corresponding I/O request.

III. NVM EXPRESS

A new storage device interface has been architected for

non-volatile memory (NVM) based on Peripheral Component

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

450
All Rights Reserved © 2016 IJARTET

Interconnect Express (PCIe) to deliver higher

performance. To realize the full benefits of NVM over the

next decade, the engineering has defined NVM Express

(NVMe), the software interface optimized for PCIe SSDs.

NVMe was architected from the ground up for NVM to ensure

a high-throughput, low latency, robust solution. SSDs based

on future NVM technologies promise to deliver speeds on the

order of millions of IOP Seven for client devices. NVM

Express is a standardized interface is need for the easy

adoption of PCIe based SSDs. NVM express specification

provides this standard interface for PCIe SSDs. NVM Express

is scalable host controller interface standard, which is

designed for Enterprise and Client systems that use PCI

express SSDs. It provides a simple, streamlined and efficient

command set which eliminates the legacy HDD to SSD

command conversion overhead. It provides an optimized

register interface that allows the host software to communicate

with the non-volatile memory Industry Support. It was

developed by industry consortium of 80+ members and hence

enjoys a very wide industry support.

A. NVMe Structure

Fig 2 NVMe Structure

The NVM Express specification is composed of

two important modules; the first one is the

Command Set and the next one is the Queuing

Interface. The command set covers both the Admin

Command Set and IO Command Set. Admin

commands are used for creating / deleting

Submission and Completion Queues. The current

version of NVM Express specification has a NVM

Command Set which replaces the existing SCSI

Command Set which was widely used across all

major Operating Systems. This eliminates the

latencies involved in translating the SCSI command

to the corresponding NVM command by the

NVMHCI device driver.

B. Queuing Interface

Fig 3 Queuing Interface

The basic steps involved in queuing interface are

Command Submission, Command Processing and Command

Completion. Commands are submitted to the NVMe controller

through the Submission Queue and the responses are received

through the Completion Queue. Command Submission

involves 1) Host writes command to submission queue. 2)

Host write updated submission queue tail pointer to doorbell.

Command Processing involves 3) Controller fetches command.

4) Controller processes commend. Command Completion

involves 5) Controller writes completion to completion queue

6) Controller generates MSI-X interrupt 7) Host processer

completion. 8) Host write updated completion queue head

pointer to doorbell. The host can ensure that the CPU core that

created the commands for a particular queue pair then

processes the interrupt, ensuring that the necessary data is

local to that CPU core. In addition, the host can configure the

system to share the interrupt processing load across cores.

C. Multicore CPU Support

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

451
All Rights Reserved © 2016 IJARTET

A limiting factor in SSDs’ IOPS

performance is the interrupt architecture. NVMe

supports MSI-X interrupt steering, which efficiently

allows a multicore host CPU to share the load. Host

software configures the core that receives the MSI-

X interrupt associated with each I/O completion

queue. The host can ensure that the CPU core that

created the commands for a particular queue pair

then processes the interrupt, ensuring that the

necessary data is local to that CPU core. This

avoids the latencies which are involved in

maintaining cache coherency as the data always

stays in the cache of the local CPU core. If the

Submission and Completion Queues are shared

among multiple CPU cores, we would require locks

for synchronization. But having a dedicated

Submission Queue and Completion Queue per core

avoids the usage of locks. In addition, the host can

configure the system to share the interrupt

processing load across cores. Having a single core

process the interrupts limits IOPS to 200,000, but

using interrupt steering and interrupt coalescing has

been demonstrated to exceed 2 million IOPS.

Fig 4 Multicore CPU Support

D. PRDT Table

The PRDTs allow the kernel to allocate

physically non-contiguous page frames, instead of a

large contiguous area starting from the address

provided in the command. Note that different

implementations of the direct memory access

(DMA) engine can deal with PRDTs differently; for

example, some DMA engines do not transfer the

PRDT at all, but parse the PRDT using the DMA

engine on the memory hub (MCH), which requires

all the pages pointed to by the PRDTs to be

transferred before moving to another request. In

case of NVMe, the PRDTs are read by the NVMe

controller. This allows having overlapping I/O

requests at the same time and gives more flexibility

to the NVMe controller firmware implementation.

IV. EXPERIMENTAL RESULTS

A. Overall Execution Time

The execution time changes when the number of

processes is increased for both of the Single Queue

(SQ) and Multiple Queues (MQ) queuing models.

Each process reads a specific part of the file, which

allows processes to proceed simultaneously. The

MQ model scales better than the SQ model for up

to 4 processes. However, in the case of 8 processes,

it is just slightly better than the SQ model.

Fig 5 Overall Execution Time

B. Command Submission Time

The average time for submitting a command

using the SQ model increases fast as the number of

processes increases, but increases at a slower pace

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

452
All Rights Reserved © 2016 IJARTET

with the MQ model. Changing the

number of processes from 4 to 8 increases the

average submission time by 30% and 5%, for SQ

and MQ models, respectively. The time is measured

beginning from trying to lock the submission queue,

and end when the NVMe controller is notified of

the submission. The submission algorithm will

involve multiple steps to transition the input

command to the required format. The algorithm

may need to acquire a lock for synchronizing

among multiple threads running in multiple cores

simultaneously.

Fig 6 Command Submission Time

C. Command Completion Time

The average time of command completion,

starting from trying to acquire the lock of the

completion queue and the corresponding

submission queues, until the NVMe controller is

notified of the completion. We can observe that the

SQ model has a higher average completion time

when running 4 processes, which is mainly caused

by the time to acquire the lock of the single

submission queue in the system. Increasing the

number of processes to 8 gives approximately the

same average completion time for SQ and MQ.

Fig 7 Command Completion Time

V. CONCLUSIONS

We have investigated the NVM host controller

interfaces feature and the impact of the system

software on the system performance. We studied

different queuing models, and explained different

system bottlenecks and performance bottlenecks for

each model. Based on our study, the largest

overhead is coming from submission commands,

then from completion entries written by the NVMe

controller to the completion queues. Reducing the

overhead of the submission commands and

completion notifications can be analyzed and

investigated in the future.

REFERENCES

[1] Amro Awad, Brett Kettering, and Yan Solihin, "NVMHCI

Performance Analysis in High-Performance I/O Systems", 2015 IEEE.

[2] Amber Huffman and Dale Juenemann, “The Nonvolatile Memory
Transformation of Client Storage”, Published by the IEEE Computer

Society 0018-9162/13 2013 IEEE.

[3] Sivashankar and S. Ramasamy, "Design and Implementation of Non-
Volatile Memory Express", 2014 International Conference on Recent

Trends in Information Technology

[4] Huffman, “NVM express 1.0c specification” February 16, 2012.
[5] Pci-sig. pci express specification revision 3.0. Technical report, 2012.

