
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

328

DYNAMIC ALLOCATION OF SLAVE

NODES IN HADOOP FRAMEWORK

Malarvizhi.P
1
, Dr.K.Amshakala

2

1. Department of Computer Science and Engineering and Information technology, Coimbatore Institute of Technology,

Coimbatore, Tamil Nadu -641014, INDIA

2. Associate Professor, Department of Computer Science and Engineering and Information technology, Coimbatore Institute

of Technology, Coimbatore, Tamil Nadu -641014, INDIA

Email:fragranceflower08@gmail.com, amshakalacit@gmail.com

Abstract— Scheduling in hadoop cluster is the way by which the tasks are assigned to multiple nodes in a cluster for

computation. Optimal scheduling strategy aims at assigning tasks to appropriate number of nodes and enhance the

overall performance in computation. As real-time scheduling of dynamic and multitasking workload is a challenging

issue, scheduling becomes essential to increase the throughput of computing. In this project, dynamic allocation of slave

nodes is done on hadoop framework, before executing tasks on hadoop. The allocation is done based on the file size. This

eventually impacts the performance of the entire system.

INDEX TERMS— BIG DATA, HADOOP, MAP REDUCE, JOB SCHEDULING ALGORITHM, MULTITASKING WORKLOAD.

I.INTRODUCTION

Hadoop is an open-source distributed framework

that helps to store and process big data in a

distributed environment across various nodes of

computers using simple programming models. It is

designed to scale from single servers to thousands

of machines, each having its own storage and

processing capability. Its distributed nature allows

rapid data transfer rates among nodes and also it

keeps on working in case of any node failure. In

hadoop, computation is not performed by one

single powerful computer but by various low cost

computers in a distributed and parallel manner.

Fluctuating workloads, multitasking, big data are

the main ingredient of large scale business and

scientific applications. A large volume of data is

being generated by various applications. The issue

is to handle these large set of data being generated

and to process it. Map reduce programming [12]

will help to process these large volume of data. It

consists of map phase and reduce phase. In map

phase, filtering and sorting is done and in reduce

phase the summary operation is done. Hadoop

framework consists of master nodes and slave

nodes for data processing. The data which need to

be processed is given to the master node, which

splits the data among slave nodes and processes

them simultaneously. Master node and slave node

will have TaskTracker and DataNode. In addition

to this, master node will have JobTracker and

NameNode. The Job of the TaskTracker is to

process the smaller pieces of tasks, and the job of

the DataNode is to manage the piece of data that is

given to this particular node. The role of

JobTracker component is to break bigger task into

smaller pieces of tasks and send each small piece of

task to the task tracker running on the slave

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

329

machine. The NameNode keeps the index

of data that are processed on each DataNode.

TaskTracker and Job tracker are responsible for

MapReduce and the entire data node and name

node are responsible for executing the files in

HDFS. The execution of task which is running on

hadoop will contact the master node .If any slave in

the hadoop cluster fails then the built-in fault

tolerance capability overcome those failure. By

default hadoop maintains three copies of each file

and store these copies across various slave nodes in

the cluster. If any TaskTracker fails, hadoop has a

capacity to detect which TaskTracker has failed

and it fetches the tasks which are assigned to the

failed node and assign the same tasks to any other

TaskTracker of slave node for processing. If the

master node fails hadoop has the back up of data

index tables that are maintained by the NameNode.

Backup copies are maintained in more than one

node in the cluster to use as fault-tolerance.

II.RELATED WORK

There are various pluggable scheduling available

for hadoop framework. Since they are pluggable

they are easily added to hadoop framework. The

various scheduling strategy [1-3] that are proposed

by various authors, have their own usage according

to their implementation. Work proposed in [2]

describes dynamic scheduling for I/O intensive jobs

and mainly focuses on I/O waiting time during

execution of task. If CPU has high I/O wait time,

then more tasks are added to newly available free

slots. Master node will monitor the state of CPU

using the command /proc/stat in a periodic interval;

this command will return how much time is spent

by each CPU in a cluster. If a particular CPU takes

additional time, then free slots are added to process

more tasks. Authors in reference [1] propose a

multitasking scheduling model which has task

classes and VM to execute each task. It will have a

set of tasks that are of same type and can be

executed at a time, i.e. suppose if it have C task

classes then it’s index can be represented by c.

Each task class has an index to reference it. VMs

are built on top of each machine for scheduling and

computing a given task and each VM has the

ability to support each task class which has unique

characteristics. Each VM will support each task

class for computation. Author in reference [4]

propose two levels of processing to schedule the

task. The first one will fill empty slots based on

number of hosted map task and its input data

replication scheme, and the second one will be

based on replicas of the task’s input data, i.e.

usually hadoop will replicate data for fault tolerant

purpose. Their work discusses an idea to use the

replicated copies of data to serve slow nodes that

are called as stragglers. Authors in reference [3]

propose locality aware scheduling which works

based on input data location and size. When data is

moved repeatedly to distant nodes, then that will

become a bottleneck. It gives the idea to schedule

reduce task using data locality, In general hadoop

will schedule map tasks which are in proximity to

input splits. Authors in Reference [5] propose delay

technique. Using this technique, if any job which

comes first does not have local map task then the

method will delay it and tries to assign another

job’s local map tasks. Maximum delay can be

specified to accomplish this task. Authors in

reference [6] propose size based scheduling; which

needs to know job size information in prior to

scheduling. Using this technique the job size

information which is not known prior is identified.

It uses virtual time and aging function. Using this

technique both small and large jobs will not suffer

from waiting or starvation.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

330

III. DYNAMIC ALLOCATION OF SLAVE

NODES

In Hadoop framework, the slave node can be added

whenever needed, i.e. when slave nodes are added

to hadoop then it is fixed, in this paper an idea to

dynamically allocate the slave node based on the

input file size.

 FIG 1: Scheduling behind MapReduce

To scale the slave node, frequently update the

etc/hosts file; this will update the slave node

according to the scaling factor. This scaling factor

should be determined well to enhance the

performance, considering various factors into

account we can determine this scaling factor. This

etc/host file will be referenced by the hadoop to

reach its slave node in the network, so the proper

definition of the slave node’s name and it’s IP

address must be defined in this file, only then

master can able to allocate the task to the slave

nodes, so by frequently updating this file can help

to scale the slave node. Doing this kind of pre

scheduling task will have impact on scheduling

performance. In case of fixed slave node the input

data will split among the fixed slave node, not

considering whether the task is small or big.

Whereas in dynamic scaling, it is vice versa, i.e. if

the task to be executed is very small the number of

slave node can be limited, in the same way if the

task is very large the number of slave node can be

increased dynamically. So that proper resource can

be allocated to execute the task in the hadoop

framework. Assume that hadoop framework has

fixed slave node say 5 for example. The large task

also gets executed in that 5 nodes and small task

will also gets executed in that 5 nodes. But in

dynamic scaling method if the task is small the

slave node can minimized to 2 and then the task

can be submitted to the scheduler, so that task gets

executed only in that 2 nodes, in the same way if

the task is large then we can increase the slave node

to 8 and then execute that job in that 8 node. So

that larger task will take less time to compute the

task. To accomplish this task we need to define the

scaling factor. This scaling factor can be based on

the file size in the particular batch. Hadoop itself

follows the batch processing mechanism so that

jobs that are similar can be grouped and the file

analysis should be done for that particular batch

and scaling factor is determined for that particular

batch. The scaling factor can be identified by the

following,

Let us assume that there are ‘n’ batch of files, each

batch of files will contain ‘m’ files of same types,

so we need to find the average file size which is

consider to be scaling factor. So the scaling factor

can be determined using the following formula,

Scaling factor = ∑ ∑
��

�

�
���

�
���

To find out scaling factor it is not enough to

consider average file size of the particular batch,but

also several factors like the total availabity of node,

maximum file size, timing constraints etc. After

finding the scaling factor, the number of slave

nodes must be determined to execute the batch of

files. So it can be determined by the

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

331

 Fig 2: Scaling slave nodes

of Slave nodes =
	�
��	����	����

�������	������

Input file size is the current input file size that is

going to get processed by the hadoop framework.

Using this we will be able to allocate slave nodes

dynamically before actual scheduling work begins.

IV ANALYSIS

For analysis we considered two file of size 700 MB

and 800 MB and scaling factor is 250. when

considering 700MB file size slave nodes allocated

is 2, and when considering 800MB file, the slave

nodes allocated is 3. The scaling factor should be

determined so that they enhance the overall

performance. After having various analysis this

scaling factor can be fixed. This scaling of node has

an impact on scheduling performance. A scaling of

node can be analyzed with the default scheduler

like FIFO, Fair and Capacity to show

improvements and the impact of dynamic

allocation of nodes can be studied.

V. CONCLUSION

Advantage of using dynamic allocation of slave

nodes improves the overall performance of the

system by allocating appropriate number of slave

nodes based on the size of the input file of the

executing task. Increasing the throughput of the

cluster benefits with the following things i.e. It able

to increases number of the slave nodes in the

cluster if larger file needs to be executed and It can

helps in improving the throughput and with

balanced cpu utilization in all the slave nodes.

 REFERENCES

[1] Zhang, Fan, et al. "Evolutionary scheduling of

dynamic multitasking workloads for big-data

analytics in elastic cloud." Emerging Topics in

Computing, IEEE Transactions on 2.3 (2014): 338-

351.

[2] Kurazumi, Shiori, et al. "Dynamic processing

slots scheduling for I/O intensive jobs of Hadoop

MapReduce." Networking and Computing (ICNC),

2012 Third International Conference on. IEEE,

2012.

[3] Hammoud, Mohammad, and Majd F. Sakr.

"Locality-aware reduce task scheduling for

MapReduce." Cloud Computing Technology and

Science (CloudCom), 2011 IEEE Third

International Conference on. IEEE, 2011.

[4] Ibrahim, Shadi, et al. "Maestro: Replica-aware

map scheduling for mapreduce." Cluster, Cloud and

Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on. IEEE, 2012.

[5] He, Chen, Ying Lu, and David Swanson.

"Matchmaking: A new mapreduce scheduling

technique." Cloud Computing Technology and

Science (CloudCom), 2011 IEEE Third

International Conference on. IEEE, 2011.

 [6] Pastorelli, Michele, et al. "HFSP: Bringing

Size-Based Scheduling To Hadoop." (2015).

[7] Rao, B. Thirumala, and L. S. S. Reddy."Survey

on improved scheduling in Hadoop Map Reduce in

cloud environment”arXivpreprint arXiv:1207.0780

(2012).

 [8] Guo, Yingjie, et al."The Improved Job

Scheduling Algorithm of Hadoop Platform." arXiv

preprint arXiv:1506.03004(2015).

[9] Patil, Mr AU, Mr TI Bagban, and Mr AP Pande.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

332

"Recent Job Scheduling Algorithms in

Hadoop Cluster Environments: A Survey."

International Journal of Advanced Research in

Computer and Communication Engineering 4.2

(2015).

[10] Wang, Dan, Jilan Chen, and Wenbing Zhao.

"A task scheduling algorithm for Hadoop

platform." Journal of Computers 8.4 (2013): 929-

936.

[11] Nanduri, Radheshyam, et al. "Job aware

scheduling algorithm for mapreduce framework."

Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International

Conference on. IEEE, 2011.

