
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

191

All Rights Reserved © 2016 IJARTET

Decisive Key Management for Cloud Data

Security Using Discrete Logarithm

M. Janaki

Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore, Tamilnadu, India.

Assistant Professor, Dr.Umayal Ramanathan College for Women, Karaikudi, Tamilnadu, India.

mjanaki81@gmail.com

Abstract - Cloud Data security can be obtained by managing

the key used for encipherment properly. When the key is

easily found then the sensitive information transformed

through the cloud will be leaked. How hard the key finding

and the time taken for doing so, decides the strength of the

security. Keys play an important role in securing data

transferred through cloud networks. It is not possible to keep

encipher and decipher algorithms hidden from unauthorized

users always. It is also meaningless to safe guard the process.

Hence a better choice will be managing the keys used for

encipher/decipher effectively. In this paper, discrete logarithm

is used for key agreement, hence it is very hard to detect it.

Instead of sharing encipherment key, it is automatically

computed without sharing it through the cloud. The time

taken for generating the key with various lengths are found.

The results are tabulated and a chart is drawn to visualize the

key generation time for different key lengths easily.

Keywords - Data security, Discrete logarithm, Key

management, Key generation.

I. INTRODUCTION

 Keys play an important role in securing data

transferred through the cloud. It is not possible to keep the

encipher and decipher algorithms hidden from unauthorized

users always. It is also meaningless to safe guard the

process. Hence a better choice will be managing the keys

used for encipher/decipher effectively. Discrete logarithm

can be used to manage encipherment key generated by

dispatcher and acceptor. Two important phases of key

management are key agreement and antiphon generation.

 The key exchange methodology based on discrete

log problem will provide a better way to share keys

between users. The dispatcher and the acceptor will get a

common key without sharing it through cloud.

Automatically the common key is generated by sharing

only a prime number and a primitive root of the number.

Discrete logarithms are logarithms defined with regard to

multiplicative cyclic groups.

II. REVIEW OF LITERATURE

Shiang-Feng Tzeng, Cheng-Chi Lee, Tzu-Chun

Lin presented an improved version of Shen and Chen’s

scheme to reduce the computational time required for key

generation and derivation [1]. Nabeel, M., Ning Shang,

Bertino, E. formalized a new key management scheme,

called broadcast group key management (BGKM), and then

gave a secure construction of a BGKM scheme called

ACV-BGKM. The idea is to give some secrets to users

based on the identity attributes they have and later allow

them to derive actual symmetric keys based on their secrets

and some public information.

A key advantage of the BGKM scheme is that

adding users/revoking users or updating acps can be

performed efficiently by updating only some public

information [2]. Using our BGKM construct, they proposed

an efficient approach for fine-grained encryption-based

access control for documents stored in an untrusted cloud

file storage.

 An important problem in public clouds is how to

selectively share documents based on fine-grained attribute-

based access control policies (acps). An approach is to

encrypt documents satisfying different policies with

different keys using a public key cryptosystem such as

attribute-based encryption, and/or proxy re-encryption [3].

However, such an approach has some weaknesses: it cannot

efficiently handle adding/revoking users or identity

attributes, and policy changes; it requires to keep multiple

encrypted copies of the same documents; it incurs high

computational costs.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

192

All Rights Reserved © 2016 IJARTET

A direct application of a symmetric key

cryptosystem, where users are grouped based on the

policies they satisfy and unique keys are assigned to each

group, also has similar weaknesses [4]. They observe that,

without utilizing public key cryptography and by allowing

users to dynamically derive the symmetric keys at the time

of decryption, one can address the above weaknesses.

III. DISCRETE LOGARITHM

 If G is a multiplicative cyclic group and g is a

generator of G, then from the definition of cyclic groups,

we know every element h in G can be written as gx for

some x. The discrete logarithm to the base g of h in the

group G is defined to be x . The discrete logarithm problem

is defined as: given a group G, a generator g of the group

and an element h of G, to find the discrete logarithm to the

base g of h in the group G.

 Discrete logarithm problem is not always hard.

The hardness of finding discrete logarithms depends on the

groups. the dispatcher and the acceptor compute the same

key for encipher and decipher since it is a symmetric key

cryptography. Dispatcher computes her encipher key by

getting the acceptor's shared secret which is got from a

chosen prime number and its primitive root along with her

own shared secret.

 The acceptor computes the decipher key by getting

dispatcher's shared secret which is got from the chosen

prime number and its primitive root along with his own

sealed secret. Since discrete algorithm is used for key

agreement, it is very hard to detect it. Instead of sharing

encipherment key, it is automatically computed without

sharing it through the cloud.

IV. KEY MANAGEMENT

 Data Security can be obtained by managing

encipherment key properly. When the key is easily found

then the sensitive information transformed through cloud

will be leaked. How hard the key finding and time taken for

doing so, decides the strength of the security. There are two

algorithms dedicated for key management. The first

algorithm is for key contract between acceptor and

dispatcher. The second algorithm is for generating the

antiphon key which will be used for encipherment and

decipherment [5]. The following notations are used in

algorithms defined further for Key Contract, Antiphon

generation.

A. Key Contract Algorithm

 The first algorithm is for key agreement between

dispatcher and acceptor based on discrete logarithm. Using

this algorithm the prime and its primitive root are agreed

between users. Later shared secret is computed from these

values and sealed secret. Using shared secret the common

key for encipher and decipher is calculated.

 Usually in symmetric key cryptography, key used

for encipher and decipher will be the same. It will be shared

through cloud between acceptor and dispatcher well in

advance before starting encipher process [6]. When

encipherment key is shared through communication

channel it is suspected to be hacked by hackers.

 After knowing encipherment key they will be

easily converting cipher text into original text and cause

unnecessary issues. In order to safe guard the key, better

avoid transmitting it into cloud. Usage of discrete

logarithm will allow hiding of secret key which is never

transmitted through unsecured communication channel.

 The dispatcher and acceptor agrees with initial

inputs prime 'P' and primitive root 'Pr'. Larger the prime

number, time taken for guessing the key will be more.

Hence based on sensitivity of data and confidentially

required, acceptor and dispatcher should choose large prime

numbers. Then a corresponding primitive root also have to

be chosen and these values can be shared through network.

Though these values are hacked, the hacker cannot find the

key because further processing is available to seal the key.

 Once these initial values are agreed between

acceptor and dispatcher. Next step is, dispatcher chooses

his own Secret value 'DS' and calculate his shared secret 'ds'

value by using the formula ds = (Pr ^ DS) mod P. Acceptor

will choose his own secret values 'AS' and calculates his

shared secret 'as' values by using the formula as = (Pr ^ AS)

mod P. The sealed secret values 'DS' and 'AS' are never

shared through the cloud.

 There lies the strength of this technique, without

knowing these values the key cannot be found. Since these

are not shared through cloud, cannot be hacked by hackers.

Shared secret values 'ds' and 'as' are exchanged between

acceptor and dispatcher. By knowing these values, hacker

cannot guess the Key. This is possible because discrete

logarithm methodology is used here.

 After shared secrets are exchanged between

acceptor and dispatcher, then next step is to compute the

common key to be used for both encipher and decipher.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

193

All Rights Reserved © 2016 IJARTET

The dispatches computer the key by using the formula EDK

= (as ^ DS) mod P. Here the key is calculated by using

dispatcher sealed secret 'DS' and acceptor shared secret 'as'

along with agreed prime number.

By using this key, dispatcher will encipher sensitive

data and send it to acceptor through cloud. At the receiving

end, the dispatcher will compute the key by using the

formula EDK = (ds ^ AS) mod P. Here key is calculated by

using acceptor sealed secret 'AS' and dispatcher shared

secret 'ds' along with agreed prime number.

 Now acceptor have computed same key used by

dispatcher for encipher. This key can be used by acceptor

to decipher the enciphered message sent by the dispatcher.

Thus acceptor will retain original message safely without

sharing common key through cloud. Acceptor and

dispatcher are able to calculate the key of their own due to

discrete logarithm technique used here.

B. Key Contract Technique

 The prime number and its primitive root are taken

as initial values and they are agreed between dispatcher and

accepter. Let Prime P = 9973 and Primitive root Pr = 9962

as initial values. Dispatcher after agreeing the prime and

primitive root, hunts a sealed secret 'DS' which is never

revealed to others , since it is not shared through cloud.

 The Dispatcher Sealed Secret DS = 4. Then

dispatcher computes shared secret 'ds' using modular

arithmetic. The Dispatcher Shared Secret ds = 9962 ^ 4

mod 9973 = 9848864207205136 mod 9973 = 4668.

Acceptor after agreeing the prime and primitive root, hunts

a sealed secret 'AS' which is never revealed to others , since

it is not shared through cloud.

 The Acceptor Sealed Secret AS = 3. Then

acceptor computes shared secret 'as' using modular

arithmetic. The Acceptor Shared Secret as = 9962 ^ 3 mod

9973 = 988643265128 mod 9973 = 8642. After shared

secrets are exchanged between dispatcher and acceptor,

dispatcher calculates Encipher/Decipher key 'EDK' using

modular arithmetic.

 The shared secret of 8642 is sent to Dispatcher.

The Dispatcher's Encipher key EDK = 5577724352378896

mod 9973 = 4410. This EDK key is used by dispatcher for

generating the antiphon and later for enciphering the

sensitive data to be sent through cloud.

 After shared secrets are exchanged between

dispatcher and acceptor, acceptor calculates

Encipher/Decipher key 'EDK' using modular arithmetic.

The shared secret of dispatcher is sent to Acceptor. The

Acceptor's Encipher key EDK = 101716765632 mod

9973 = 4410.

 This EDK key is used by acceptor for generating

the antiphon and later for deciphering the scrambled data

received from dispatcher through cloud. The sample data

explained above shows that, after computation is performed

both acceptor and dispatcher is obtaining same key as a

magic, though they have not shared the key through cloud.

V. ANTIPHON GENERATION ALGORITHM

 This algorithm is capable of separating exchanged

key as into consecutive two digits from left to right and

equivalent key from the VIJANA character set is taken as

the Antiphon Key [7][8]. From the key contract algorithm

described before, a common key is computed which can be

used for encipher and decipher.

 In VIJANA cryptography, by using the common

key calculated by the acceptor and the dispatcher, Antiphon

(Key word) should be generated using VIJANA character

set. This Antiphon is used for encipher and decipher. The

VIJANA character set has 95 characters which includes 26

uppercase alphabet, 26 lower case alphabets, 10 numerals, 6

braces, 7 operators, 19 special characters and a space.

 For internal calculation, Ascii characters are taken

into account. First step to generate the antiphon is finding

the square of the common key computed before. Then

separate the number into two consecutive digits from left to

right. Take first two digit and check whether the two digit

number is greater or lesser than the character set limit 95.

 If it is greater than 95 then remainder should be

found and taken as the value [10]. Now pick the

corresponding character in VIJANA character set by seeing

the index as the 2 digit number. Now pick corresponding

characters for all 2 digit numbers from the VIJANA

character set.

 All these characters are concatenated to get the

Antiphon. This antiphon is used for enciphering original

message by dispatcher and at destination the same key is

used by acceptor for deciphering scrambled data.

A. Antiphon Generation

 After the encipher/decipher key is computed using

key contract algorithm, next phase is to generate the

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

194

All Rights Reserved © 2016 IJARTET

antiphon to be used for encipher and decipher. For

generating the antiphon, EDK need to be squared. Then

every consecutive two digits of the number is separated

from left to right. The corresponding ASCII value is taken

for the two digits related to only printable keys [9].

 Let Encipher/Decipher Key EDK = 43322723 and

the Square S=1876858328134729. Every two consecutive

digits of the number is separated from left to right as 18, 76,

85, 83, 28, 13, 47and 29. The equivalent character for 18 is

1, 76 is k, 85 is t, 83 is r, 28 is ;,13 is ,, 47 is N and 29 is <.

The Antiphon generated is K = 1ktr;,N<

 The length of the key is generated is 64 bits.

Apart from this, key length can be 16 bits, 32bits, 64 bits,

128 bits, 256 bits and 512 bits so on. For a sample of data

keys with different lengths are generated. The time taken

for the following key lengths are shown in the following

table.

Table 1. Antiphon Generation Time

Key Length

(bits)

Antiphon Generation

Time (ms)

16 0.125

32 0.2508

64 0.375

128 0.4621

256 0.5007

512 0.6254
 The antiphon generation time tabulated above can

be shown in pictorial form in Figure 1. for clear depiction

using 2D column chart.

Figure 1. Antiphon Generation Time

 The chart is drawn by having the key length

measured in bits in x-axis and antiphon generation time in

milliseconds in y-axis. The chart shows that key length is

directly proportional to the antiphon generation time. As the

key length increases so the antiphon generation time also

increases.

VI. CONCLUSION

 The prime number chosen for computation ensures

the security level. If more security is needed then large

prime is to be selected. Suppose a prime number of around

20 digits and sealed secrets at least 15 digits each are used

for generating keys, then discovering the shared secrets take

longer time (even months). After few months, if the key is

found using cryptanalysis, it is not useful because the

confidential data loses its sensitivity within this time gap.

This is the strength of discrete logarithm which computes

more secured keys used for enciphering sensitive data

shared through cloud. Sending more and more confidential

data into cloud cannot be avoided today. Cloud data can be

shielded when the key management is done by using the

discrete logarithm. Thus key management improved with

discrete logarithm ensure safe cloud data storage and

transactions.

REFERENCES

[1] Shiang-Feng Tzeng1 , Cheng-Chi Lee2 , Tzu-Chun Lin3," A Novel

Key Management Scheme for Dynamic Access Control in a Hierarchy",

International Journal of Network Security, Vol.12, No.3, PP.178–180,

May 2011.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

195

All Rights Reserved © 2016 IJARTET

[2] Shuhua Wu , Kefei Chen, " An Efficient Key-Management

Scheme for Hierarchical Access Control in E-Medicine System",
Journal of Medical Systems August 2012, Volume 36, Issue 4, pp 2325-

2337.

[3] Murali, P, Senthilkumar, G. “Modified Version of Playfair Cipher

Using Linear Feedback Shift Register”, Information Management and

Engineering, 2009. ICIME '09.

[4] Nabeel, M., Ning Shang,; Bertino, E., "Privacy Preserving Policy-

Based Content Sharing in Public Clouds", Knowledge and Data

Engineering, IEEE Transactions on (Volume:25 , Issue: 11), September

2012.
[5] Niv Ahituv, Yeheskel Lapid and Seev Neumann, "Processing

Encrypted Data", Communications of the ACM, September 1987 Volume

30 Number 9.
[6] Yumnam Kirani Singh, "A SIMPLE, FAST AND SECURE CIPHER",

ARPN Journal of Engineering and Applied Sciences, VOL. 6, NO. 10,

OCTOBER 2011.
[7] M.Janaki, Dr.M.Ganaga Durga, "A Noval Cryptographic Technique

Magnified With Shielded Key Contract" published in "International

Journal of Applied Engineering Research", Volume 10, Number 10(2015),

PP. 25095-25105, ISSN 0973-4562.

[8] M.Janaki, Dr.M.Ganaga Durga, " Securing Cloud Data Using

Cryptography", published in "International Journal of Advance Research

in Science and Engineering", Volume 04, Issue S1(01), April 2015, ISSN-

2319-8354(E).

[9] M.Janaki, Dr.M.Ganaga Durga, "Enhancing Network Data Security
with VIJANA Enchipherment Technique" published in International

Journal of Applied Engineering Research, ISSN-0973-4562, Volume 10,

No.55 (2015).
[10] M.Janaki, Dr.M.Ganaga Durga, " Preserving sensitive data shared

through the network against security threats using cryptography",

published in Indian Journal of Education and Information Management,
Vol 4 (1), October 2015, ISSN (Online) : 2277 - 5374.

