
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

86
All Rights Reserved © 2016 IJARTET

Sorting in Numerical Dataset to Minimize The

Complexity in Multi-Core Processors
J.Dheebika

1
, Dr.T.Meyyapan

2

1
M.Phil Research Scholar,

2
Professor

Department of Computer Science and Engineering, Alagappa University,

Karaikudi-600 003, Tamilnadu, India.
1
dheebika94@gmail.com,

2
meyyappant@alagappauniversity.ac.in

Abstract— Sorting problem is a common problem in parallel

computing environment. The performance of parallel sorting

algorithm based on the data size and its values. Day by day the

computing cost is increase gradually due to utilization of advance

computing architecture. Middle level organizations are facing

difficulties to build the advance multi core architecture. Most of

the Researches contribute the algorithms for improving the

sorting technique in parallel computing architecture. Today’s

single Parallel sorting algorithm is applied over various large

numerical dataset and compare with other algorithms. Even the

researchers contribute novel or improved sorting techniques,

time complexity increases due to size and values of dataset. The

ideas of our contribution, multi parallel sorting algorithms are

applied over in single large dataset in multi core environment

and analysis the performance with single parallel sorting

algorithm which is implementing in single dataset. The analysis

result shows the better performance compare with existing

parallel sorting algorithm and utilization of hardware resources

improves the optimal.

Keywords— Sorting algorithm, Parallel processing, Multi core

architecture.

I. INTRODUCTION

Sorting algorithms are widely used in numerical problems.

Various types of sorting algorithms implements in to different

architectures for gaining efficiency and optimize the

utilization of system resources.. They are having distinct

properties for various architecture models. Nowadays, data

collection and transformation handles in Giga bytes level of

size. In addition, the system architecture reach the new

dimension of nano electronic system. New algorithms or

modify the existing methods requires to improve the

efficiency based on the utilization of advanced hardware

architecture. Currently, multi core architecture is one of the

advance hardware architecture. Parallel programming concept

is very suitable to engage the multi core architecture. Various

types of parallel sorting algorithm accustom in to parallel

computing environment. The well known sorting algorithms

with parallel structure are parallel quick sort, parallel merge

sort, odd sort, bitonic sort. Even parallel sorting algorithms

adapts on multi core architecture. The level of efficiency

decides from on characteristics of numerical data. Some

algorithms achieve the good performance and others fail on

same hardware environment. The reason of this conflict arises

based on data. Hence, sometimes, optimal utilization of

hardware resources is unsuccessful. In this paper, Implements

the parallel sorting algorithms simultaneously in each core in

parallel not a single parallel sorting algorithm for all core.

Measure the time complexity of proposed method and existing

method. The time complexity metric value shows the

utilization of core architecture optimized compare with other

methods.

II. SORTING ALGORITHMS

Data-driven algorithms especially use sorting to gain an

efficient access to data. Many sorting algorithms with distinct

properties for different architectures have been developed. It

should be noted that some sorting algorithms for sequential

hardware platforms should be modified when implemented on

parallel architectures. Some algorithms have a parallel

structure, making them easier to adapt for parallel hardware

architecture. There are a few well-known hybrid algorithms

on GPU cards and multi-core systems. Peters [3] implemented

an adaptive bitonic sorting algorithm with a bitonic tree based

on a tables structure. In order to increase the speed of sort,

multiple steps of bitonic merge have to be executed with a

single kernel invocation. This can be achieved with multistep

bitonic sort [4]. Interval Based Rearrangement (IBR) bitonic

sort [5] is based on adaptive bitonic sort implemented by

Bilardi et al. [9]. Cederman [1] adapted a quick sort for the

GPU platform. Bitonic sort is a sorting-network algorithm

developed by Batcher [6]. A sorting network is a sorting

algorithm where the sequence of comparisons is

predetermined and data-independent. The Bitonic algorithm

sorts a sequence of N elements and consists of logN stages.

Multiple steps of bitonic merge have to be executed with a

single kernel invocation. This can be achieved with multistep

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

87
All Rights Reserved © 2016 IJARTET

bitonic sort [4]. Adaptive bitonic sort operates

on the idea, that every bitonic sequence can be merged, if first

half of a bitonic sequence and second half of a bitonic

sequence are ring-shifted by a value called q. Value q can be

found with a variation of a binary search. Merge sort is based

on the divide-and-conquer approach. It follows this approach

by splitting the sequence into multiple subsequences, sorting

them and then merging them into sorted sequence. If the

algorithm for merging sorted sequences is stable, than the

whole merge sort algorithm is also stable [10]. Sathish [2]

presented the parallel merge sort with variation. quicksort is

also based on the divide-and-conquer basis. In divide step, the

pivot has to be determined. This pivot is used to partition the

input sequence A[p...r] into 2 subsequences. When the

partitioning is done, pivot has to be placed in A[q], where all

the elements in subsequence A[p...q − 1] have to be lower or

equal to A[q] and all the elements of A[q + 1...r] have to be

greater than A[q] [11]. For a good performance an effective

sorting algorithm has to be used, which is usually counting

sort [2,8,10]. Sample sort is a sorting algorithm, which splits

the input sequence into multiple smaller buckets, until they are

small enough to be sorted by alternative sort. For the parallel

implementation we chose variation of the sample sort by

Dehne et al. [6], because it is more robust for sorting different

types of input sequences than Leischner’s et al. [7, 8]. Radix

sort is one of the fastest sorting algorithms for short keys and

is the only sorting algorithm in this report which is not

comparison based. Its sequential variation first splits the

elements being sorted (numbers, words, dates, ...) into d r-bit

digits.

III. PROPOSED WORK

Advance processors consist of more than two central

processing unit. This architecture can be executed multiple

programs at the same time. Multiple CPU integrated into

single hardware architecture. Processors companies have

designed several multi-core processors for sharing memory,

inter-core communication and message passing. Mainly

parallel programs are executed in multi-core processor

environment. Sorting problem is one of the common in

numerical computation. Sorting algorithm execute the large

count of number in parallel that is called parallel sorting

algorithm. The design of parallel sorting algorithm adapts on

the parallel computing architecture. Existing processing

models execute the sorting algorithm in parallel of all core

sequentially. The diagram shows the implementation of

parallel sorting algorithm in each core sequentially.

Fig. 1 Parallel quick sort algorithm

A. Multi parallel sorting algorithm

Quick sort is one of the types of sorting algorithm and its

efficiency is good that compares with other sorting algorithm.

Mostly single parallel sorting algorithm executes in parallel

sequentially on multi core processor. The computational

complexity may be vary in different sorting algorithm or

different core architecture. The diagram shows the

implementation of multi parallel sorting algorithm in multi-

core architecture.

Fig. 2 Multi Parallel Sorting algorithm

The obtained computational complexity of the algorithm is the

equal sequential complexity divided by the number of parallel

multiprocessors – n/p _ log2n.In this work, there are three

types of sorting algorithm participate into multi core

architecture. Initially, large amount of numerical data split

into numbers of piece. The number of pieces is equal to

number of core processors engaged in parallel computing.

Each piece allocates into each core. Three different sorting

algorithms such as quick sort, merger sort, and heap sort

participate to sorting the piece of numerical data in each core.

The multi sorting algorithm computational complexity is

(average computational complexity of three sorting algorithm

– n _ log (n), memory complexity – 2 _ n).

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 20, April 2016

88
All Rights Reserved © 2016 IJARTET

IV. EXPERIMENTAL RESULTS

The proposed method implements in Matlab-8.1. The

parallel computing tool box helps to design the multi-core

architecture. There are 3 core is used for testing process and

three different algorithm applies into the multi core

architecture. The thyroid dataset has taken from UCI machine

learning repository. The TSH attribute values split into three

parts. First part of the data applies into core-1, second part of

the data connects with core-2 and third part of the data works

with core-3. Quick sort applies in to core-1, Mergesort

executes with core-2 and heapsort implements into core-3.

The time complexity is calculated and result shows in the

table 1.

TABLE I

TIME COMPLEXITY RESULTS

Core -1

Quick Sort

(6000 Recs)

Core-2

Merge

Sort(8000

Recs)

Core -3

Heap sort

(10000 Recs)

0.37 ms 0.41 ms 0.53 ms

Fig. 3 Graphical Representation of Complexity results.

In fig3, It is examined that the proposed method, the time

complexity of core 1 process is reduced than others. The time

period of execution is increased while apply the heap sort in

10000 records.

V. CONCLUSIONS

Previous works on parallel algorithms, single parallel

sorting algorithm applied into each core of the multi-core

architecture. Sometimes, the time complexity increases based

on the numerical dataset. In this paper, multi parallel sorting

algorithms implement in each core of the multi-core

architecture. This work encourages increase the efficiency of

computing performance and reduces the usage of hardware

resources. In future, this hybrid sorting algorithms will be

apply in multi-core architecture and allocate the core

processor dynamically that is based on the characteristics of

dataset.

REFERENCES

[1] Cederman D, Tsigas P. GPU-quicksort: A practical quicksort algorithm

for graphics processors. J. Exp. Algorithmics Jan 2010; 14:4:1.4–

4:1.24,.
[2] Satish N, Harris M, Garland M. “Designing efficient sorting algorithms

for manycore GPUs”. Proceedings of the 2009 IEEE International

Symposium on Parallel&Distributed Processing, IPDPS ’09, IEEE

Computer Society: Washington, DC, USA, 2009; 1–10,

[3] Batcher KE. Sorting networks and their applications. Proceedings of

the April 30–May 1968, Spring Joint Computer Conference, AFIPS ’68

(Spring), ACM: New York, NY, USA,

[4] Peters H, Schulz-Hildebrandt O, Luttenberger N. Fast in-place,

comparison-based sorting with CUDA: A study with bitonic sort.
Concurr. Comput. : Pract. Exper. May 2011; 23(7):681–693,

[5] Peters H, Schulz-Hildebrandt O, Luttenberger N. A novel sorting

algorithm for many-core architectures based on adaptive bitonc sort.
26th IEEE International Parallel and Distributed Processing

Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012, 2012;

[6] Dehne F, Zaboli H. Deterministic sample sort for GPUs. CoRR 2010;
abs/1002.4464. URL http://dblp. uni-

trier.de/db/journals/corr/corr1002.html #abs- 1002- 4464.

[7] Leischner N, Osipov V, Sanders P. GPU sample sort. 24th IEEE
International Symposium on Parallel and Distributed Processing,

IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference

Proceedings, 2010; 1–10

[8] Cudpp: CUDA data parallel primitives library.

https://github.com/cudpp/cudpp/, 2015

[9] Bilardi G, Nicolau A. Adaptive bitonic sorting: An optimal parallel

algorithm for shared memory machines. Technical Report, Ithaca, NY,

USA 1986.

[10] Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction to

Algorithms, Third Edition. 3rd edn., The MIT Press, 2009.

[11] Hoare C A R. Quicksort. The Computer Journal Jan 1962; 5(1):10–16.

0

0.1

0.2

0.3

0.4

0.5

0.6

Core -1 Quick Sort

(6000 Recs)

Core-2 Merge Sort

(8000 Recs)

Core -3 Heap sort

(10000 Recs)

