

197

All Rights Reserved © 2016 IJARTET

Authenticated Key Exchange Protocols for Parallel Network
File Systems

@

 Jansi Sophia Mary.C
#
 Dhanalakshmi.P

$
 Kalaivani.R.E

@,#,$
 Department of Computer Science and Engineering,

Idhaya Engineering College for Women, Chinnasalem, Tamil Nadu, India

Abstract—This paper deals the problem of key

establishment for secure many-to-many communications.
The problem is inspired by the proliferation of large-scale
distributed file systems supporting parallel access to
multiple storage devices. Our work focuses on the current
Internet standard for such file systems, i.e., parallel
Network File System (pNFS), which makes use of Kerberos
to establish parallel session keys between clients and
storage devices. Our review of the existing Kerberos-based
protocol shows that it has a number of limitations: (i) a
metadata server facilitating key exchange between the
clients and the storage devices has heavy workload that
restricts the scalability of the protocol; (ii) the protocol does
not provide forward secrecy; (iii) the metadata server
generates itself all the session keys that are used between
the clients and storage devices, and this inherently leads to
key escrow. In this paper, we propose a variety of
authenticated key exchange protocols that are designed to
address the above issues. We show that our protocols are
capable of reducing up to approximately 54% of the
workload of the metadata server and concurrently
supporting forward secrecy and escrow-freeness. All this
requires only a small fraction of increased computation
overhead at the client.

Keywords-Parallel sessions, authenticated key exchange,
network file systems, forward secrecy, key escrow.

I. INTRODUCTION

In a parallel file system, file data is distributed
acrossmultiple storage devices or nodes to allow concurrent
access by multiple tasks of a parallel application. This is
typically used in large-scale cluster computing that focuses
on high performance and reliable access to large datasets.
That is, higher I/O bandwidth is achieved through
concurrent accessto multiple storage devices within large
compute clusters;while data loss is protected through data
mirroring usingfault-tolerant striping algorithms. Some
examples of highperformanceparallel file systems that are in
production useare the IBM General Parallel File System
(GPFS) [48], GoogleFile System (GoogleFS) [21], Lustre
[35], Parallel Virtual FileSystem (PVFS) [43], and Panasas
File System [53]; whilethere also exist research projects on
distributed object storagesystems such as Usra Minor [1],
Ceph [52], XtreemFS [25],and Gfarm [50]. These are
usually required for advancedscientific or data-intensive
applications such as, seismic dataprocessing, digital
animation studios, computational fluid dynamics,and
semiconductor manufacturing. In these
environments,hundreds or thousands of file system clients
share dataand generate very high aggregate I/O load on the

file systemsupporting petabyte- or terabyte-scale storage
capacities.

Independent of the development of cluster and high
performance computing, the emergence of clouds [6], [37]
and the MapReduce programming model [13] has resultedin
file systems such as the Hadoop Distributed File
System(HDFS) [26], Amazon S3 File System [6], and
Cloud-Store [11]. This, in turn, has accelerated the wide-
spreaduse of distributed and parallel computation on large
datasetsin many organizations. Some notable users of the
HDFSinclude AOL, Apple, eBay, Facebook, Hewlett-
Packard, IBM,LinkedIn, Twitter, and Yahoo! [23].

In this work, we investigate the problem of secure manyto-
many communications in large-scale network file systems
that support parallel access to multiple storage devices. That
is, we consider a communication model where there area
large number of clients (potentially hundreds or thousands)
accessing multiple remote and distributed storage devices
(which also may scale up to hundreds or thousands) in
parallel. Particularly, we focus on how to exchange key
materials and establish parallel secure sessions between the
clients and the storage devices in the parallel Network File
System (pNFS) [46]—the current Internet standard—in an
efficient and scalable manner. The development of pNFS is
driven by Panasas, Netapp, Sun, EMC, IBM, and
UMich/CITI, and thus it shares many common features and
is compatible with many existing commercial/proprietary
network file systems.

Our primary goal in this work is to design efficient and
secure authenticated key exchange protocols that meet
specificrequirements of pNFS. Particularly, we attempt to
meet thefollowing desirable properties, which either have
not beensatisfactorily achieved or are not achievable by the
currentKerberos-based solution (as described in Section II):
• Scalability – the metadata server facilitating access

requestsfrom a client to multiple storage devices shouldbear
as little workload as possible such that the serverwill not
become a performance bottleneck, but is capableof
supporting a very large number of clients;
• Forward secrecy – the protocol should guarantee

thesecurity of past session keys when the long-term secret
key of a client or a storage device is compromised [39];

• Escrow-free – the metadata server should not learn

anyinformation about any session key used by the client
andthe storage device, provided there is no collusion
amongthem.

198

All Rights Reserved © 2016 IJARTET

The main results of this paper are three new provablysecure
authenticated key exchange protocols.
Ourprotocols,progressively designed to achieve each of the
above properties,demonstrate the trade-offs between
efficiency and security. We show that our protocols can
reduce the workload of the metadata server by
approximately half compared to the current Kerberos-based
protocol, while achieving the desired security properties and
keeping the computational overhead at the clients and the
storage devices at a reasonably low level. We define an
appropriate security model and prove that our protocols are
secure in the model.

II. INTERNET STANDARD — NFS
Network File System (NFS) [46] is currently the sole file
system standard supported by the Internet Engineering Task
Force (IETF). The NFS protocol is a distributed file system
protocol originally developed by Sun Microsystems that
allows a user on a client computer, which may be diskless,
to access files over networks in a manner similar to how
local storage is accessed [47]. It is designed to be portable
across different machines, operating systems, network
architectures, and transport protocols. Such portability is
achieved through the use of Remote Procedure Call (RPC)
[51] primitives built on top of an eXternal Data
Representation (XDR) [15]; with the former providing a
procedure-oriented interface to remote services, while the
latter providing a common way of representing a set
of data types over a network. The NFS protocol has since
then evolved into an open standard defined by the IETF
Network Working Group [49], [9], [45]. Among the current
key features are filesystem migration and replication, file
locking, data caching, delegation (from server to client), and
crash recovery.

In recent years, NFS is typically used in environments
where performance is a major factor, for example, high-
performance Linux clusters. The NFS version 4.1
(NFSv4.1) [46] protocol, the most recent version, provides a
feature called parallel NFS (pNFS) that allows direct,
concurrent client access to multiple storage devices to
improve performance and scalability. As described in the
NFSv4.1 specification:

When file data for a single NFS server is stored on multiple
and/or higher-throughput storage devices (by comparison to
the server’s throughput capability), the result can be
significantly better file access performance.pNFS separates
the file system protocol processing into two parts: metadata
processing and data processing. Metadata is information
about a file system object, such as its name, location within
the namespace, owner, permissions and other attributes.The
entity that manages metadata is called a metadata server.
On the other hand, regular files’ data is striped and stored
across storage devices or servers. Data striping occurs in at
least two ways: on a file-by-file basis and, within
sufficiently large files, on a block-by-block basis. Unlike
NFS, a read or write of data managed with pNFS is a direct
operation between a client node and the storage system
itself. Figure 1 illustrates the conceptual model of pNFS.

Fig 1The conceptual model of pNFS

More specifically, pNFS comprises a collection of
threeprotocols: (i) the pNFS protocol that transfers file
metadata, also known as a layout,1 between the metadata
server and a client node; (ii) the storage access protocol
that specifies how a client accesses data from the associated
storage devices according to the corresponding metadata;
and (iii) the control protocol that synchronizes state

between the metadata server and the storage devices.
2

A. Security Consideration
Earlier versions of NFS focused on simplicity and
efficiency, and were designed to work well on intranets and
local networks. Christo Ananth et al. [5] discussed about a
method, End-to-end inference to diagnose and repair the
data-forwarding failures, our optimization goal to minimize
the faults at minimum expected cost of correcting all faulty
nodes that cannot properly deliver data. First checking the
nodes that has the least checking cost does not minimize the
expected costin fault localization. We construct a potential
function for identifying the candidate nodes, one of which
should be first checked by an optimal strategy. We proposes
efficient inferring approach to the node to be checked in
large-scale networks.Moreover, consideration should be
given to the integrity and privacy (confidentiality) of NFS
requests and responses [45].

The RPCSEC GSS framework [17], [16] is currently the
core security component of NFS that provides asic security
services. RPCSEC GSS allows RPC protocols to access the
Generic Security Services Application Programming
Interface (GSS-API) [33]. The latter is used to facilitate
exchange of credentials between a local and a remote
communicating parties, for example between a client and a
server, in order to establish a security context. The GSS-
API achieves these through an interface and a set of generic
functions that are independent of the underlying security
mechanisms and communication protocols employed by the

199

All Rights Reserved © 2016 IJARTET

communicating parties. Hence, with RPCSEC GSS, various
security mechanisms or protocols can be employed to
provide services such as, encrypting NFS
traffic and performing integrity check on the entire body of
an NFSv4 call.

Similarly, in pNFS, communication between the client and
the metadata server are authenticated and protected through
RPCSEC GSS. The metadata server grants access
permissions (to storage devices) to the client according to
pre-defined access control lists (ACLs).3 The client’s I/O
request to a storage device must include the corresponding
valid layout. Otherwise, the I/O request is rejected. In an
environment where eavesdropping on the communication
between the client and the storage device is of sufficient
concern, RPCSEC GSS is used to provide privacy
protection [46].

B. Kerberos & LIPKEY
In NFSv4, the Kerberos version 5 [32], [18] and the Low
Infrastructure Public Key (LIPKEY) [14] GSS-API
mechanisms are recommended, although other mechanisms
may also be specified and used. Kerberos is used
particularly for user authentication and single sign-on, while
LIPKEY provides an TLS/SSL-like model through the
GSS-API, particularly for server authentication in the
Internet environment. User and Server Authentication.
Kerberos, a widely deployed network authentication
protocol supported by all major
operating systems, allows nodes communicating over a
nonsecure network to perform mutual authentication. It
works in a client-server model, in which each domain (also
known as realm) is governed by a Key Distribution Center
(KDC), acting as a server that authenticates and provides
ticket-granting services to its users (through their respective
clients) within the domain. Each user shares a password
with its KDC and a user is authenticated through a
password-derived symmetric key known only between the
user and the KDC. However, one security weakness of such
an authentication method is that it may be susceptible to an
off-line password guessing attack, particularly when a weak
password is used to derive a key that encrypts a protocol
message transmitted between the client and the KDC.
Furthermore, Kerberos has strict time requirements,
implying that the clocks of the involved hosts must be
synchronized with that of the KDC within configured limits.

Hence, LIPKEY is used instead to authenticate the client
with a password and the metadata server with a public key
certificate, and to establish a secure channel between the
client and the server. LIPKEY leverages the existing Simple
Public- Key Mechanism (SPKM) [2] and is specified as an
GSSAPI mechanism layered above SPKM, which in turn,
allows both unilateral and mutual authentication to be
accomplished without the use of secure time-stamps.
Through LIPKEY, analogous to a typical TLS deployment
scenario that consists of a client with no public key
certificate accessing a server with a public key certificate,
the client in NFS [14]:

• obtains the metadata server’s certificate;

• verifies that it was signed by a trusted
CertificationAuthority (CA);

• generates a random session symmetric key;

• encrypts the session key with the metadata server’s public
key; and

• sends the encrypted session key to the server.

At this point, the client and the authenticated metadata
server have set up a secure channel. The client can then
provide a user name and a password to the server for user
authentication.

Single Sign-on. In NFS/pNFS that employs Kerberos, each
storage device shares a (long-term) symmetric key with the
metadata server (which acts as the KDC). Kerberos then
allows the client to perform single sign-on, such that the
client is authenticated once to the KDC for a fixed period of
time but may be allowed access to multiple storage devices
governed by the KDC within that period. This can be
summarized in three rounds of communication between the
client, the metadata server, and the storage devices as
follows:

1) the client and the metadata server perform mutual
authentication through LIPKEY (as described before), and
the server issues a ticket-granting ticket (TGT) to the client
upon successful authentication;
2) the client forwards the TGT to a ticket-granting
server(TGS), typically the same entity as the KDC, in
orderto obtain one or more service tickets (each containinga
session key for access to a storage device), and validlayouts
(each presenting valid access permissions to astorage device
according to the ACLs);
3) the client finally presents the service tickets and
layoutsto the corresponding storage devices to get access to
thestored data objects or files.

We describe the above Kerberos-based key
establishmentprotocol in more detail in Section III-C.

Secure storage access. The session key generated by
theticket-granting server (metadata server) for a client and
astorage device during single sign-on can then be used in
thestorage access protocol. It protects the integrity and
privacyof data transmitted between the client and the
storage device.Clearly, the session key and the associated
layout are validonly within the granted validity period.

C. Current Limitations
The current design of NFS/pNFS focuses on
interoperability, instead of efficiency and scalability, of
various mechanisms to provide basic security. Moreover,
key establishment between a client and multiple storage
devices in pNFS are based on those for NFS, that is, they
are not designed specifically for parallel communications.
Hence, the metadata server is not only responsible for
processing access requests to storage devices (by granting
valid layouts to authenticated and authorized clients), but
also required to generate all the corresponding session keys
that the client needs to communicate securely with the

200

All Rights Reserved © 2016 IJARTET

storage devices to which it has been granted access. keyshared with the metadata server is compromised. We
Consequently, the metadata server may become a believe
performance bottleneck for the file system. Moreover, such that this is a realistic threat since a large-scale file system
protocol design leads to key escrow. Hence, in principle, mayhave thousands of geographically distributed storage
the server can learn all information transmitted between a devices.It may not be feasible to provide strong physical
client and a storage device. This, in turn, makes the server security andnetwork protection for all the storage devices.

an attractive target for attackers.

Another drawback of the current approach is that past
session keys can be exposed if a storage device’s long-term

Fig 2 A Simplified version of the KerberOS based pNFS protocol.
 from the precomputed key materials and present the
 III. OVERVIEW OF OUR PROTOCOLS corresponding authentication tokens. Note here, C is not
We describe our design goals and give some intuition of a required to compute the key materials before each access
variety of pNFS authenticated key exchange6 (pNFS-AKE) request to a storage device, but instead this is done at the
protocols that we consider in this work. In these protocols, beginning of a pre-defined validity period v, which may be,
we focus on parallel session key establishment between a for example, a day or week or month. For each request to
client and n different storage devices through a metadata access one or more storage devices at a specific time t, C

server. Nevertheless, they can be extended then computes a session key from the pre-computed
straightforwardly to the multi-user setting, i.e., many-to- material. This way, the workload of generating session keys
many communications between clients and storage devices. is amortized over v for all the clients within the file system.
 Our three variants of pNFS-AKE protocols can be
A. Design Goals summarized as follows:
In our solutions, we focus on efficiency and scalability
with respect to the metadata server. That is, our goal is to pNFS-AKE-I: Our first protocol can be regarded as
reduce the workload of the metadata server. On the other amodified version of Kerberos that allows the client
hand, the computational and communication overhead for togenerate its own session keys. That is, the key
both the client and the storage device should remain materialused to derive a session key is pre-computed by
reasonably low. More importantly, we would like to meet theclient foreach v and forwarded to the
all these goals while ensuring at least roughly similar correspondingstorage device in the form of an
security as that of the Kerberos-based protocol shown in authentication tokenat time t (within v). As with Kerberos,
Section III-C. In fact, we consider a stronger security model symmetric keyencryption is used to protect the
with forward secrecy for three of our protocols such that confidentiality of secretinformation used in the protocol.
compromise of a long-term secret key of a client C or a However, the protocoldoes not provide any forward
storage device Si will not expose the associated past session secrecy. Further, the keyescrow issue persists here since the
keys shared between C and Si. Further, we would like an authentication tokenscontaining key materials for
escrow-free solution, that is, the metadata server does not computing session keys aregenerated by the server.
learn the session key shared between a client and a storage

device, unless the server colludes with either one of them. pNFS-AKE-II: To address key escrow while achieving
 forward secrecy simultaneously, we incorporate a Diffie
B. Main Ideas Hellman key agreement technique into Kerberos-like
Recall that in Kerberos-based pNFS, the metadata server is pNFS-AKE-I. Particularly, the client C and the storage
required to generate all service tickets E(KMSi; IDC; t; ski) deviceSi each now chooses a secret value (that is known
and session keys ski between C and Si for all 1 _ i _ n, and only to itself) and pre-computes a Diffie-Hellman key
thus placing heavy workload on the server. In our solutions, component. A session key is then generated from both the
intuitively, C first pre-computes some key materials and Diffie-Hellman components. Upon expiry of a time period
forward them to M, which in return, issues the v, the secret values and Diffie-Hellman key components are
corresponding ―authentication tokensǁ (or service tickets). permanently erased, such that in the event when either C or
C can then, when accessing Si (for all i), derive session keys Si is compromised, the attacker will no longer have access

201

All Rights Reserved © 2016 IJARTET

to the key values required to compute past session keys.
However, note that we achieve only partial forward secrecy
(with respect to v), by trading efficiency over security. This
implies that compromise of a long-term key can expose
session keys generated within the current v. However, past
session keys in previous (expired) time periods v′ (for v′ <
v) will not be affected.
pNFS-AKE-III: Our third protocol aims to achieve full
forward secrecy, that is, exposure of a long-term key affects
only a current session key (with respect to t), butnot all the
other past session keys. We would also like to prevent key
escrow. In a nutshell, we enhance pNFSAKE- II with a key
update technique based on any efficient one-way function,
such as a keyed hash function. In Phase I, we require C and
each Si to share some initial key material in the form of a
Diffie-Hellman key. In Phase II, the initial shared key is
then used to derive session keys in the form of a keyed hash
chain. Since a hash value in the chain does not reveal
information about its pre-image, the associated session key
is forward secure.

IV. DESCRIPTION OF OUR PROTOCOLS

We first introduce some notation required for our protocols.
Let F(k;m) denote a secure key derivation function that
takes as input a secret key k and some auxiliary information
m, and outputs another key. Let siddenote a session

identifier which can be used to uniquely name the ensuing
session. Let also N be the total number of storage devices to
which a client is allowed to access. We are now ready to
describe the
construction of our protocols.

A. pNFS-AKE-I
Our first pNFS-AKE protocol is illustrated in Figure 3. For
each validity period v, C must first pre-compute a set of
keymaterialsKCS1 ; : : : ;KCSN before it can access any of the
N storage device Si (for 1 _ i _ N). The key materials are

transmitted to M. We assume that the communication
between C andMis authenticated and protected through a
secure channel associated with key KCM established using
the existing methods as described in Section II-B. M then
issues an authentication token of the form E(KMSi; IDC; IDSi;

v;KCSi) for each key material if the associated storage device
S has not been revoked.7 This completes Phase I of the
protocol. From this point onwards, any request from C to
access Si is considered part of Phase II of the protocol until
v expires.
When C submits an access request to M, the request
contains all the identities of storage devices Si for 1 _ i _ n _
Nthat C wishes to access. For each Si, M issues a layout _i.
C then forwards the respective layouts, authentication

tokens (from Phase I), and encrypted messages of the form
E(sk0

i ; IDC; t) to all n storage devices.
Upon receiving an I/O request for a file object from C, each
Si performs the following:
1) check if the layout _iis valid;
2) decrypt the authentication token and recover key KCSi;
3) compute keys skzi= F(KCSi; IDC; IDSi; v; sid; z) forz = 0;
1;
4) decrypt the encrypted message, check if IDC matches the
identity of C and if t is within the current validity period v;

5) if all previous checks pass, Si replies C with a key
confirmation message using key sk0 i.

At the end of the protocol, sk1 iis set to be the session key
for securing communication between C and Si. We note
that, as suggested in [7], sidin our protocol is uniquely
generated for each session at the application layer, for
example through the GSS-API.

Fig 3 Specification of pNFS- AKE-I
B. pNFS-AKE-II
We now employ a Diffie-Hellman key agreement technique
to both provide forward secrecy and prevent key escrow. In
this protocol, each Si is required to pre-distribute some key
material to M at Phase I of the protocol. Let gx2 G denote a
Diffie-Hellman component, where G is an appropriate
group generated by g, and x is a number randomly chosen
by entity X 2 fC; Sg. Let _ (k;m) denote a secure MAC
scheme that takes as input a secret key k and a target
message m, and output a MAC tag. Our partially forward
secure protocol is specified in Figure 4. At the beginning of
each v, each Si that is governed by M generates a Diffie-
Hellman key component gsi. The key
componentgsiis forwarded to and stored by M. Similarly, C
generates its Diffie-Hellman key component gcand sends it
to M.8 At the end of Phase I, C receives all the key
components corresponding to all N storage devices that it
may access within time period v, and a set of authentication
tokens of the form _ (KMSi; IDC; IDSi; v; gc; gsi). We note
that for ease of exposition, we use the same key KMSifor
encryption in step (1) and MAC in step (2). In actual
implementation, however, we assume that different keys are
derived for encryption and MAC, respectively, with KMSias
the master key. For example, the encryption key can be set
to be F(KMSi; ―encǁ), while the MAC key can be set to be
F(KMSi; ―macǁ). Steps (1) & (2) of Phase II are identical to

those in the previous variants. In step (3), C submits its
Diffie-Hellman component gcin addition to other
information required in step (3) of pNFS-AKE-I. Si must
verify the authentication token to ensure the integrity of gc.
Here C and Si compute skzifor z = 0; 1 as follow:
skzi= F(gcsi; IDC; IDSi; gc; gsi; v; sid; z):

At the end of the protocol, C and Si share a session key
sk1i .

Note that since C distributes its chosen Diffie-Hellman
value gcduring each protocol run (in Phase II), each Si needs

202

All Rights Reserved © 2016 IJARTET

to store only its own secret value siand is not required to
maintain a list of gcvalues for different clients. Upon expiry
of v, they erase their secret values c and si, respectively,
from their internal states (or memory). Clearly, M does not
learn anything about skz
iunless it colludes with the associated C or Si, and thus

achieving escrow-freeness.

Fig 4 Specification of pNFS- AKE-II (With partial forward
secrecy and escrow free)
C. pNFS-AKE-III
As explained before, pNFS-AKE-II achieves only partial
forward secrecy (with respect to v). In the third variant of
our pNFS-AKE, therefore, we attempt to design a protocol
that achieves full forward secrecy and escrow- reeness. A
straightforward and well-known technique to do this is
through requiring both C and Si to generate and exchange
fresh Diffie-Hellman components for each access request at
time t. However, this would drastically increase the
computational overhead at the client and the storage
devices. Hence, we adopt a different approach here by
combining the Diffie-Hellman key exchange technique used
in pNFS-AKE-II with a very efficient key update
mechanism. The latter allows session keys to be derived
using only symmetric key operations based on a agreed
Diffie-Hellman key. Our protocol is illustrated in Figure 5.

Phase I of the protocol is similar to that of pNFS-AKEII.
In addition, M also distributes C’s chosen Diffie-Hellman
component gcto each Si. Hence, at the end of Phase I, both C

and Si are able to agree on a Diffie-Hellman value gcsi.
Moreover, C and Si set F1(gcsi; IDC; IDSi; v) to be their initial
shared secret state K0CSi .9 During each access request at
time t in Phase II, steps (1) & (2) of the protocol are
identical to those in pNFS-AKE-II. In step (3), however, C
can directly establish a secure session with Si by computing
skj,zias follows:

skj,zi= F2(Kj−1CSi; IDC; IDSi; j; sid; z)

wherej _ 1 is an increasing counter denoting the j-th session
between C and Si with session key skj,1 i. Both C and Si then
set
KjCSi= F1(Kj−1CSi; j)

and update their internal states. Note that here we use two
different key derivation functions F1 and F2 to compute
KjCSiand skj,zi, respectively. Our design can enforce

independence among different session keys. Even if the
adversary has obtained a session key skj,1i, the adversary
cannot derive Kj−1 CSior KjCSi. Therefore, the adversary
cannot obtain skj+1,zior any of the following session keys. It
is worth noting that the shared state KjCSishould never be
used as the session key in real communications, and just
like the long-term secret key, it should be kept at a safe
place, since otherwise, the adversary can use it to derive all
the subsequent session keys within the validity period (i.e.,
KjCSican be regarded as a medium-term secret key material).
This is similar to the situation that once the adversary
compromises the long-term secret key, it can
learn all the subsequence sessions.
However, we stress that knowing the state information
KjCSiallows the adversary to compute only the subsequence

sessionkeys (i.e., skj+1,zi; skj+2,zi; _ _ _) within a validity
period, butnot the previous session keys (i.e., sk1, i; sk2,zi; _ _

_ ; skj,zi)within the same period. Our construction achieves
thisby making use of one-way hash chains constructed
usingthe pseudo-random function F1. Since knowing
KjCSidoes not help the adversary in obtaining the previous
states(Kj−1CSi;Kj−2CSi; :::;K0C Si), we can prevent the
adversary from
obtaining the corresponding session keys. Also, since
compromiseof KMSior KCM does not reveal the initial state
K0CSiduring the Diffie-Hellman key exchange, we can

achieve fullforward secrecy.

Fig 3 Specification of pNFS- AKE-III (With full forward
secrecy and escrow free)

V. PERFORMANCE EVALUATION

A. Computational Overhead
We consider the computational overhead for w
accessrequests over time period v for a metadata server M, a
client C, and storage devices Si for i 2 [1;N]. We ssume that
a layout _ is of the form of a MAC, and the computational
cost for authenticated symmetric encryption E is similar to
that for the non-authenticated version E.10 Table I gives a
comparison between Kerberos-based pNFS and our
protocols in terms of the number of cryptographic
operations required for executing the protocols over time
period v. To give a more concrete view, Table II provides
some estimation of the total computation times in seconds
(s) for each protocol by using the Crypto++ benchmarks
obtained on an Intel Core 2 1.83 GHz processor under
Windows Vista in 32-bit mode [12]. We choose AES/CBC
(128-bit key) for encryption, AES/GCM (128-bit, 64K

203

All Rights Reserved © 2016 IJARTET

tables) for authenticated encryption, HMAC(SHA-1) for
MAC, and SHA-1 for key derivation. Also, Diffie-Hellman
exponentiations are based on DH 1024-bit key pair
generation. Our estimation is based on a fixed message size
of 1024 bytes for all cryptographic operations, and we
consider the following case:

• N = 2n and w = 50 (total access requests by C withinv);

• C interacts with 103 storage devices concurrently for each

access request, i.e. n = 103;
• M has interacted with 105 clients over time period v; and
• eachSi has interacted with 104 clients over time period v.

server’s perspective in terms of supporting a large number
of clients is further illustrated in the left graph of Figure 6
when we consider each client requesting access to an
average of n = 103 storage devices.

Moreover, the additional overhead for C (and all Si) for
achieving full forward secrecy and escrow-freeness using
our techniques are minimal. The right graph of Figure 6
shows that our pNFS-AKE-III protocol has roughly similar
computational overhead in comparison with Kerberos-pNFS
when the number of accessed storage devices is small; and
the increased computational overhead for accessing 103
storage devices in parallel is only roughly 1/500 of a second
compared to that of Kerberos-pNFS—a very reasonable
trade-off between efficiency and security. The small
increase in overhead is partly due to the fact that some of
our cryptographic cost is amortized over a time period v
(recall that and for each access request at time t, the client
runs only Phase II of the protocol).

On the other hand, we note that the significantly
highercomputational overhead incurred by Si in pNFS-
AKE-II is largely due to the cost of Diffie-Hellman
exponentiations. This is a space-computation trade-off as
explained in Section V-B (see Section VII-C for further

Table II shows that our protocols reduce the workload of in
the existing Kerberos-based protocol by up to
approximately 54%. This improves the scalability of the
metadata server considerably. The total estimated
computational cost for M for serving 105 clients is 8:02 _
104 s (_ 22.3 hours) in Kerberos-based pNFS, compared
with 3:68 _ 104 s (_ 0.2 hours) in pNFS-AKE-I and 3:86 _
104 s (_ 10.6 hours) in pNFS-AKE-III. In general, one can
see from Table I that the workload of M is always reduced
by roughly half for any values of (w; n;N). The scalability
of our protocols from the

discussion on key storage). Nevertheless, 256 s is an
average computation time for 103 storage devices over time
period v, and thus the average computation time for a
storage device is still reasonably small, i.e. less than 1/3 of a
second over time period v. Moreover, we can reduce the
computational cost for Si to roughly similar to that of pNFS-
AKE-III if C pre-distributes its gcvalue to all relevant Si so
that they can pre-compute the gcsivalue for each time period
v.

B. Communication Overhead
Assuming fresh session keys are used to secure
communications between the client and multiple storage
devices, clearly all our protocols have reduced bandwidth
requirements. This is because during each access request,
the client does not need to fetch the required authentication
token set from M. Hence, the reduction in bandwidth
consumption is approximately the size of n authentication
tokens.

C. Key Storage
We note that the key storage requirements for
KerberospNFS and all our described protocols are roughly
similar from the client’s perspective. For each access
request, the client needs to store N or N + 1 key materials

204

All Rights Reserved © 2016 IJARTET

(either in the form of symmetric keys or Diffie-Hellman
components) in their internal states. However, the key
storage requirements for each storage device is higher in
pNFS-AKE-III since the storage device has to store some
key material for each client in their internal state. This is in
contrast to Kerberos-pNFS, pNFS-AKE-I and pNFS-AKE-
II that are not required to maintain any client key
information.

VI. CONCLUSIONS
We proposed three authenticated key exchangeprotocols for
parallel network file system (pNFS). Our protocols offer
threeappealing advantages over the existing Kerberos-based
pNFSprotocol. First, the metadata server executing our
protocolshas much lower workload than that of the
Kerberos-basedapproach. Second, two our protocols
provide forward secrecy:one is partially forward secure
(with respect to multiplesessions within a time period),
while the other is fully forwardsecure (with respect to a
session). Third, we have designed aprotocol which not only
provides forward secrecy, but is alsoescrow-free.

VII. REFERENCES

[1] M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R.

Ganger, J. Hen-dricks, A.J. Klosterman, M.P. Mesnier,

M. Prasad, B. Salmon, R.R. Sam-basivan, S.

Sinnamohideen, J.D. Strunk, E. Thereska, M. Wachs,

and J.J. Wylie. Ursa Minor: Versatile cluster-based

storage. In Proceedings of the 4th USENIX Conference

on File and Storage Technologies (FAST), pages 59–

72. USENIX Association, Dec 2005.

[2] C. Adams. The simple public-key GSS-API mechanism

(SPKM). The Internet Engineering Task Force (IETF),

RFC 2025, Oct 1996.
[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R.

Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M.
Theimer, and R. Wattenhofer. FARSITE: Federated,
available, and reliable storage for an incompletely
trusted environment. In Proceedings of the 5th
Symposium on Operating System Design and

Implementation (OSDI). USENIX Association, Dec

2002.
[4] M.K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,

E. Oertli, D.G. Andersen, M. Burrows, T. Mann, and
C.A. Thekkath. Block-level security for network-
attached disks. In Proceedings of the 2nd International
Conference on File and Storage Technologies (FAST).
USENIX Association, Mar 2003.

[5] Christo Ananth, Mary Varsha Peter, Priya.M.,
Rajalakshmi.R., Muthu Bharathi.R., Pramila.E.,
“Network Fault Correction in Overlay Network through
Optimality”, International Journal of Advanced
Research Trends in Engineering and Technology
(IJARTET), Volume 2, Issue 8, August 2015, pp: 19-22

[6] Amazon simple storage service (Amazon S3).
http://aws.amazon.com/ s3/.

