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Abstract—This paper deals the problem of key 

establishment for secure many-to-many communications. 
The problem is inspired by the proliferation of large-scale 
distributed file systems supporting parallel access to 
multiple storage devices. Our work focuses on the current 
Internet standard for such file systems, i.e., parallel 
Network File System (pNFS), which makes use of Kerberos 
to establish parallel session keys between clients and 
storage devices. Our review of the existing Kerberos-based 
protocol shows that it has a number of limitations: (i) a 
metadata server facilitating key exchange between the 
clients and the storage devices has heavy workload that 
restricts the scalability of the protocol; (ii) the protocol does 
not provide forward secrecy; (iii) the metadata server 
generates itself all the session keys that are used between 
the clients and storage devices, and this inherently leads to 
key escrow. In this paper, we propose a variety of 
authenticated key exchange protocols that are designed to 
address the above issues. We show that our protocols are 
capable of reducing up to approximately 54% of the 
workload of the metadata server and concurrently 
supporting forward secrecy and escrow-freeness. All this 
requires only a small fraction of increased computation 
overhead at the client. 

 
Keywords-Parallel sessions, authenticated key exchange, 
network file systems, forward secrecy, key escrow. 

 
I. INTRODUCTION  

In a parallel file system, file data is distributed 
acrossmultiple storage devices or nodes to allow concurrent 
access by multiple tasks of a parallel application. This is 
typically used in large-scale cluster computing that focuses 
on high performance and reliable access to large datasets. 
That is, higher I/O bandwidth is achieved through 
concurrent accessto multiple storage devices within large 
compute clusters;while data loss is protected through data 
mirroring usingfault-tolerant striping algorithms. Some 
examples of highperformanceparallel file systems that are in 
production useare the IBM General Parallel File System 
(GPFS) [48], GoogleFile System (GoogleFS) [21], Lustre 
[35], Parallel Virtual FileSystem (PVFS) [43], and Panasas 
File System [53]; whilethere also exist research projects on 
distributed object storagesystems such as Usra Minor [1], 
Ceph [52], XtreemFS [25],and Gfarm [50]. These are 
usually required for advancedscientific or data-intensive 
applications such as, seismic dataprocessing, digital 
animation studios, computational fluid dynamics,and 
semiconductor manufacturing. In these 
environments,hundreds or thousands of file system clients 
share dataand generate very high aggregate I/O load on the 

 

 
file systemsupporting petabyte- or terabyte-scale storage 
capacities. 

 
Independent of the development of cluster and high 
performance computing, the emergence of clouds [6], [37] 
and the MapReduce programming model [13] has resultedin 
file systems such as the Hadoop Distributed File 
System(HDFS) [26], Amazon S3 File System [6], and 
Cloud-Store [11]. This, in turn, has accelerated the wide-
spreaduse of distributed and parallel computation on large 
datasetsin many organizations. Some notable users of the 
HDFSinclude AOL, Apple, eBay, Facebook, Hewlett-
Packard, IBM,LinkedIn, Twitter, and Yahoo! [23]. 

 
In this work, we investigate the problem of secure manyto-
many communications in large-scale network file systems 
that support parallel access to multiple storage devices. That 
is, we consider a communication model where there area 
large number of clients (potentially hundreds or thousands) 
accessing multiple remote and distributed storage devices 
(which also may scale up to hundreds or thousands) in 
parallel. Particularly, we focus on how to exchange key 
materials and establish parallel secure sessions between the 
clients and the storage devices in the parallel Network File 
System (pNFS) [46]—the current Internet standard—in an 
efficient and scalable manner. The development of pNFS is 
driven by Panasas, Netapp, Sun, EMC, IBM, and 
UMich/CITI, and thus it shares many common features and 
is compatible with many existing commercial/proprietary 
network file systems. 

 
Our primary goal in this work is to design efficient and 
secure authenticated key exchange protocols that meet 
specificrequirements of pNFS. Particularly, we attempt to 
meet thefollowing desirable properties, which either have 
not beensatisfactorily achieved or are not achievable by the 
currentKerberos-based solution (as described in Section II):  
• Scalability – the metadata server facilitating access 

requestsfrom a client to multiple storage devices shouldbear 
as little workload as possible such that the serverwill not 
become a performance bottleneck, but is capableof 
supporting a very large number of clients;  
• Forward secrecy – the protocol should guarantee 

thesecurity of past session keys when the long-term secret 
key of a client or a storage device is compromised [39]; 

 

• Escrow-free – the metadata server should not learn 

anyinformation about any session key used by the client 
andthe storage device, provided there is no collusion 
amongthem. 
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The main results of this paper are three new provablysecure 
authenticated key exchange protocols. 
Ourprotocols,progressively designed to achieve each of the 
above properties,demonstrate the trade-offs between 
efficiency and security. We show that our protocols can 
reduce the workload of the metadata server by 
approximately half compared to the current Kerberos-based 
protocol, while achieving the desired security properties and 
keeping the computational overhead at the clients and the 
storage devices at a reasonably low level. We define an 
appropriate security model and prove that our protocols are 
secure in the model.  

II. INTERNET STANDARD — NFS  
Network File System (NFS) [46] is currently the sole file 
system standard supported by the Internet Engineering Task 
Force (IETF). The NFS protocol is a distributed file system 
protocol originally developed by Sun Microsystems that 
allows a user on a client computer, which may be diskless, 
to access files over networks in a manner similar to how 
local storage is accessed [47]. It is designed to be portable 
across different machines, operating systems, network 
architectures, and transport protocols. Such portability is 
achieved through the use of Remote Procedure Call (RPC) 
[51] primitives built on top of an eXternal Data 
Representation (XDR) [15]; with the former providing a 
procedure-oriented interface to remote services, while the 
latter providing a common way of representing a set  
of data types over a network. The NFS protocol has since 
then evolved into an open standard defined by the IETF 
Network Working Group [49], [9], [45]. Among the current 
key features are filesystem migration and replication, file 
locking, data caching, delegation (from server to client), and 
crash recovery. 

 
In recent years, NFS is typically used in environments 
where performance is a major factor, for example, high-
performance Linux clusters. The NFS version 4.1 
(NFSv4.1) [46] protocol, the most recent version, provides a 
feature called parallel NFS (pNFS) that allows direct, 
concurrent client access to multiple storage devices to 
improve performance and scalability. As described in the 
NFSv4.1 specification: 

 
When file data for a single NFS server is stored on multiple 
and/or higher-throughput storage devices (by comparison to 
the server’s throughput capability), the result can be 
significantly better file access performance.pNFS separates 
the file system protocol processing into two parts: metadata 
processing and data processing. Metadata is information 
about a file system object, such as its name, location within 
the namespace, owner, permissions and other attributes.The 
entity that manages metadata is called a metadata server.  
On the other hand, regular files’ data is striped and stored 
across storage devices or servers. Data striping occurs in at 
least two ways: on a file-by-file basis and, within 
sufficiently large files, on a block-by-block basis. Unlike 
NFS, a read or write of data managed with pNFS is a direct 
operation between a client node and the storage system 
itself. Figure 1 illustrates the conceptual model of pNFS. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1The conceptual model of pNFS 

 
More specifically, pNFS comprises a collection of 
threeprotocols: (i) the pNFS protocol that transfers file 
metadata, also known as a layout,1 between the metadata 
server and a client node; (ii) the storage access protocol 
that specifies how a client accesses data from the associated 
storage devices according to the corresponding metadata; 
and (iii) the control protocol that synchronizes state 

between the metadata server and the storage devices.
2 

 
A. Security Consideration  
Earlier versions of NFS focused on simplicity and 
efficiency, and were designed to work well on intranets and 
local networks. Christo Ananth et al. [5] discussed about a 
method, End-to-end inference to diagnose and repair the 
data-forwarding failures, our optimization goal to minimize 
the faults at minimum expected cost of correcting all faulty 
nodes that cannot properly deliver data. First checking the 
nodes that has the least checking cost does not minimize the 
expected costin fault localization. We construct a potential 
function for identifying the candidate nodes, one of which 
should be first checked by an optimal strategy. We proposes 
efficient inferring approach to the node to be checked in 
large-scale networks.Moreover, consideration should be 
given to the integrity and privacy (confidentiality) of NFS 
requests and responses [45]. 

 
The RPCSEC GSS framework [17], [16] is currently the 
core security component of NFS that provides asic security 
services. RPCSEC GSS allows RPC protocols to access the 
Generic Security Services Application Programming 
Interface (GSS-API) [33]. The latter is used to facilitate 
exchange of credentials between a local and a remote 
communicating parties, for example between a client and a 
server, in order to establish a security context. The GSS-
API achieves these through an interface and a set of generic 
functions that are independent of the underlying security 
mechanisms and communication protocols employed by the 
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communicating parties. Hence, with RPCSEC GSS, various 
security mechanisms or protocols can be employed to 
provide services such as, encrypting NFS  
traffic and performing integrity check on the entire body of 
an NFSv4 call. 

 
Similarly, in pNFS, communication between the client and 
the metadata server are authenticated and protected through 
RPCSEC GSS. The metadata server grants access 
permissions (to storage devices) to the client according to 
pre-defined access control lists (ACLs).3 The client’s I/O 
request to a storage device must include the corresponding 
valid layout. Otherwise, the I/O request is rejected. In an 
environment where eavesdropping on the communication 
between the client and the storage device is of sufficient 
concern, RPCSEC GSS is used to provide privacy 
protection [46]. 

 
B. Kerberos & LIPKEY  
In NFSv4, the Kerberos version 5 [32], [18] and the Low 
Infrastructure Public Key (LIPKEY) [14] GSS-API 
mechanisms are recommended, although other mechanisms 
may also be specified and used. Kerberos is used 
particularly for user authentication and single sign-on, while 
LIPKEY provides an TLS/SSL-like model through the 
GSS-API, particularly for server authentication in the 
Internet environment. User and Server Authentication. 
Kerberos, a widely deployed network authentication 
protocol supported by all major  
operating systems, allows nodes communicating over a 
nonsecure network to perform mutual authentication. It 
works in a client-server model, in which each domain (also 
known as realm) is governed by a Key Distribution Center 
(KDC), acting as a server that authenticates and provides 
ticket-granting services to its users (through their respective 
clients) within the domain. Each user shares a password 
with its KDC and a user is authenticated through a 
password-derived symmetric key known only between the 
user and the KDC. However, one security weakness of such 
an authentication method is that it may be susceptible to an 
off-line password guessing attack, particularly when a weak 
password is used to derive a key that encrypts a protocol 
message transmitted between the client and the KDC. 
Furthermore, Kerberos has strict time requirements, 
implying that the clocks of the involved hosts must be 
synchronized with that of the KDC within configured limits. 
 

 
Hence, LIPKEY is used instead to authenticate the client 
with a password and the metadata server with a public key 
certificate, and to establish a secure channel between the 
client and the server. LIPKEY leverages the existing Simple 
Public- Key Mechanism (SPKM) [2] and is specified as an 
GSSAPI mechanism layered above SPKM, which in turn, 
allows both unilateral and mutual authentication to be 
accomplished without the use of secure time-stamps. 
Through LIPKEY, analogous to a typical TLS deployment 
scenario that consists of a client with no public key 
certificate accessing a server with a public key certificate, 
the client in NFS [14]: 

• obtains the metadata server’s certificate;  

• verifies that it was signed by a trusted 
CertificationAuthority (CA);  

• generates a random session symmetric key;  

• encrypts the session key with the metadata server’s public 
key; and  

• sends the encrypted session key to the server. 

 
At this point, the client and the authenticated metadata 
server have set up a secure channel. The client can then 
provide a user name and a password to the server for user 
authentication. 

 
Single Sign-on. In NFS/pNFS that employs Kerberos, each 
storage device shares a (long-term) symmetric key with the 
metadata server (which acts as the KDC). Kerberos then 
allows the client to perform single sign-on, such that the 
client is authenticated once to the KDC for a fixed period of 
time but may be allowed access to multiple storage devices 
governed by the KDC within that period. This can be 
summarized in three rounds of communication between the 
client, the metadata server, and the storage devices as 
follows: 

 
1) the client and the metadata server perform mutual 
authentication through LIPKEY (as described before), and 
the server issues a ticket-granting ticket (TGT) to the client 
upon successful authentication;  
2) the client forwards the TGT to a ticket-granting 
server(TGS), typically the same entity as the KDC, in 
orderto obtain one or more service tickets (each containinga 
session key for access to a storage device), and validlayouts 
(each presenting valid access permissions to astorage device 
according to the ACLs);  
3) the client finally presents the service tickets and 
layoutsto the corresponding storage devices to get access to 
thestored data objects or files. 

 
We describe the above Kerberos-based key 
establishmentprotocol in more detail in Section III-C. 

 
Secure storage access. The session key generated by 
theticket-granting server (metadata server) for a client and 
astorage device during single sign-on can then be used in 
thestorage access protocol. It protects the integrity and 
privacyof data transmitted between the client and the 
storage device.Clearly, the session key and the associated 
layout are validonly within the granted validity period. 
 
C. Current Limitations  
The current design of NFS/pNFS focuses on 
interoperability, instead of efficiency and scalability, of 
various mechanisms to provide basic security. Moreover, 
key establishment between a client and multiple storage 
devices in pNFS are based on those for NFS, that is, they 
are not designed specifically for parallel communications. 
Hence, the metadata server is not only responsible for 
processing access requests to storage devices (by granting 
valid layouts to authenticated and authorized clients), but 
also required to generate all the corresponding session keys 
that the client needs to communicate securely with the 
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storage devices to which it has been granted access. keyshared with the metadata server is compromised. We  
Consequently, the metadata server may become a believe  
performance bottleneck for the file system. Moreover, such that this is a realistic threat since a large-scale file system  
protocol design leads to key escrow. Hence, in principle, mayhave  thousands  of geographically distributed  storage  
the server can learn all information transmitted between a devices.It may not be feasible to provide strong physical  
client and a storage device. This, in turn, makes the server security andnetwork protection for all the storage devices. 

an attractive target for attackers. 

 
Another  drawback  of  the  current  approach  is  that  past  
session keys can be exposed if a storage device’s long-term 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 2 A Simplified version of the KerberOS based pNFS protocol. 
       from  the  precomputed  key  materials  and  present  the 
 III. OVERVIEW OF OUR PROTOCOLS   corresponding authentication tokens. Note here,  C is not 
We describe our design goals and give some intuition of a  required to compute the key materials before each access 
variety of pNFS authenticated key exchange6 (pNFS-AKE)  request to a storage device, but instead this is done at the 
protocols that we consider in this work. In these protocols,  beginning of a pre-defined validity period v, which may be, 
we focus on parallel session key establishment between a  for example, a day or week or month. For each request to 
client and n different storage devices through a metadata  access one or more storage devices at a specific time t, C 

server. Nevertheless, they can be extended  then  computes  a  session  key  from  the  pre-computed 
straightforwardly to the multi-user  setting, i.e., many-to-  material. This way, the workload of generating session keys 
many communications between clients and storage devices.  is amortized over v for all the clients within the file system. 
       Our  three  variants  of  pNFS-AKE  protocols  can  be 
A. Design Goals      summarized as follows:    
In our solutions, we focus on efficiency and scalability       
with respect to the metadata server. That is, our goal is to  pNFS-AKE-I:  Our  first  protocol  can  be  regarded  as 
reduce the workload of the metadata server. On the other  amodified  version  of  Kerberos  that  allows  the  client 
hand, the computational and communication overhead for  togenerate  its  own  session  keys.  That  is,  the  key 
both  the  client  and  the  storage  device  should  remain  materialused to derive a session key is pre-computed by 
reasonably low. More importantly, we would like to meet  theclient    foreach    v    and    forwarded    to    the 
all  these  goals  while  ensuring  at  least  roughly  similar  correspondingstorage   device   in   the   form   of   an 
security as that of the Kerberos-based protocol shown in  authentication tokenat time t (within v). As with Kerberos, 
Section III-C. In fact, we consider a stronger security model  symmetric   keyencryption   is   used   to   protect   the 
with forward secrecy for three of our protocols such that  confidentiality of secretinformation  used in the protocol. 
compromise of a long-term secret key of a client C or a  However,  the  protocoldoes  not  provide  any  forward 
storage device Si will not expose the associated past session  secrecy. Further, the keyescrow issue persists here since the 
keys shared between C and Si. Further, we would like an  authentication    tokenscontaining    key   materials    for 
escrow-free solution, that is, the metadata server does not  computing session keys aregenerated by the server.  
learn the session key shared between a client and a storage       

device, unless the server colludes with either one of them.  pNFS-AKE-II:  To  address  key escrow  while  achieving 
       forward secrecy simultaneously, we incorporate a Diffie 
B. Main Ideas      Hellman  key  agreement  technique  into  Kerberos-like 
Recall that in Kerberos-based pNFS, the metadata server is  pNFS-AKE-I. Particularly, the client C and the storage 
required to generate all service tickets E(KMSi; IDC; t; ski)  deviceSi  each now chooses a secret value (that is known 
and session keys ski between C and Si for all 1 _ i _ n, and  only  to  itself)  and  pre-computes  a  Diffie-Hellman  key 
thus placing heavy workload on the server. In our solutions,  component. A session key is then generated from both the 
intuitively, C first pre-computes some key materials and  Diffie-Hellman components. Upon expiry of a time period 
forward   them   to   M,   which   in   return,   issues   the  v, the secret values and Diffie-Hellman key components are 
corresponding ―authentication tokensǁ (or service tickets).  permanently erased, such that in the event when either C or 
C can then, when accessing Si (for all i), derive session keys  Si is compromised, the attacker will no longer have access 
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to the key values required to compute past session keys. 
However, note that we achieve only partial forward secrecy 
(with respect to v), by trading efficiency over security. This 
implies that compromise of a long-term key can expose 
session keys generated within the current v. However, past 
session keys in previous (expired) time periods v′ (for v′ < 
v) will not be affected.  
pNFS-AKE-III: Our third protocol aims to achieve full 
forward secrecy, that is, exposure of a long-term key affects 
only a current session key (with respect to t), butnot all the 
other past session keys. We would also like to prevent key 
escrow. In a nutshell, we enhance pNFSAKE- II with a key 
update technique based on any efficient one-way function, 
such as a keyed hash function. In Phase I, we require C and 
each Si to share some initial key material in the form of a 
Diffie-Hellman key. In Phase II, the initial shared key is 
then used to derive session keys in the form of a keyed hash 
chain. Since a hash value in the chain does not reveal 
information about its pre-image, the associated session key 
is forward secure. 

 
IV. DESCRIPTION OF OUR PROTOCOLS  

We first introduce some notation required for our protocols. 
Let F(k;m) denote a secure key derivation function that 
takes as input a secret key k and some auxiliary information 
m, and outputs another key. Let siddenote a session 

identifier which can be used to uniquely name the ensuing 
session. Let also N be the total number of storage devices to 
which a client is allowed to access. We are now ready to 
describe the  
construction of our protocols. 

 
A. pNFS-AKE-I  
Our first pNFS-AKE protocol is illustrated in Figure 3. For 
each validity period v, C must first pre-compute a set of 
keymaterialsKCS1 ; : : : ;KCSN before it can access any of the 
N storage device Si (for 1 _ i _ N). The key materials are 

transmitted to M. We assume that the communication 
between C andMis authenticated and protected through a 
secure channel associated with key KCM established using 
the existing methods as described in Section II-B. M then 
issues an authentication token of the form E(KMSi; IDC; IDSi; 

v;KCSi) for each key material if the associated storage device 
S has not been revoked.7 This completes Phase I of the 
protocol. From this point onwards, any request from C to 
access Si is considered part of Phase II of the protocol until 
v expires.  
When C submits an access request to M, the request 
contains all the identities of storage devices Si for 1 _ i _ n _ 
Nthat C wishes to access. For each Si, M issues a layout _i. 
C then forwards the respective layouts, authentication 

tokens (from Phase I), and encrypted messages of the form 
E(sk0

i ; IDC; t) to all n storage devices. 
Upon receiving an I/O request for a file object from C, each 
Si performs the following:  
1) check if the layout _iis valid; 
2) decrypt the authentication token and recover key KCSi;  
3) compute keys skzi= F(KCSi; IDC; IDSi; v; sid; z) forz = 0;  
1;  
4) decrypt the encrypted message, check if IDC matches the 
identity of C and if t is within the current validity period v; 

5) if all previous checks pass, Si replies C with a key 
confirmation message using key sk0 i. 

 
At the end of the protocol, sk1 iis set to be the session key 
for securing communication between C and Si. We note 
that, as suggested in [7], sidin our protocol is uniquely 
generated for each session at the application layer, for 
example through the GSS-API. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3 Specification of pNFS- AKE-I  
B. pNFS-AKE-II  
We now employ a Diffie-Hellman key agreement technique 
to both provide forward secrecy and prevent key escrow. In 
this protocol, each Si is required to pre-distribute some key 
material to M at Phase I of the protocol. Let gx2 G denote a 
Diffie-Hellman component, where G is an appropriate 
group generated by g, and x is a number randomly chosen 
by entity X 2 fC; Sg. Let _ (k;m) denote a secure MAC 
scheme that takes as input a secret key k and a target 
message m, and output a MAC tag. Our partially forward 
secure protocol is specified in Figure 4. At the beginning of 
each v, each Si that is governed by M generates a Diffie-
Hellman key component gsi. The key  
componentgsiis forwarded to and stored by M. Similarly, C 
generates its Diffie-Hellman key component gcand sends it 
to M.8 At the end of Phase I, C receives all the key 
components corresponding to all N storage devices that it 
may access within time period v, and a set of authentication 
tokens of the form _ (KMSi; IDC; IDSi; v; gc; gsi). We note 
that for ease of exposition, we use the same key KMSifor 
encryption in step (1) and MAC in step (2). In actual 
implementation, however, we assume that different keys are 
derived for encryption and MAC, respectively, with KMSias 
the master key. For example, the encryption key can be set 
to be F(KMSi; ―encǁ), while the MAC key can be set to be  
F(KMSi; ―macǁ). Steps (1) & (2) of Phase II are identical to 

those in the previous variants. In step (3), C submits its 
Diffie-Hellman component gcin addition to other 
information required in step (3) of pNFS-AKE-I. Si must 
verify the authentication token to ensure the integrity of gc. 
Here C and Si compute skzifor z = 0; 1 as follow:  
skzi= F(gcsi; IDC; IDSi; gc; gsi; v; sid; z): 

 
At the end of the protocol, C and Si share a session key 
sk1i . 

 
Note that since C distributes its chosen Diffie-Hellman 
value gcduring each protocol run (in Phase II), each Si needs 
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to store only its own secret value siand is not required to 
maintain a list of gcvalues for different clients. Upon expiry 
of v, they erase their secret values c and si, respectively, 
from their internal states (or memory). Clearly, M does not 
learn anything about skz  
iunless it colludes with the associated C or Si, and thus 

achieving escrow-freeness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4 Specification of pNFS- AKE-II (With partial forward 
secrecy and escrow free)  
C. pNFS-AKE-III  
As explained before, pNFS-AKE-II achieves only partial 
forward secrecy (with respect to v). In the third variant of 
our pNFS-AKE, therefore, we attempt to design a protocol 
that achieves full forward secrecy and escrow- reeness. A 
straightforward and well-known technique to do this is 
through requiring both C and Si to generate and exchange 
fresh Diffie-Hellman components for each access request at 
time t. However, this would drastically increase the 
computational overhead at the client and the storage 
devices. Hence, we adopt a different approach here by 
combining the Diffie-Hellman key exchange technique used 
in pNFS-AKE-II with a very efficient key update 
mechanism. The latter allows session keys to be derived 
using only symmetric key operations based on a agreed 
Diffie-Hellman key. Our protocol is illustrated in Figure 5. 

 
Phase I of the protocol is similar to that of pNFS-AKEII.  
In addition, M also distributes C’s chosen Diffie-Hellman 
component gcto each Si. Hence, at the end of Phase I, both C 

and Si are able to agree on a Diffie-Hellman value gcsi. 
Moreover, C and Si set F1(gcsi; IDC; IDSi; v) to be their initial 
shared secret state K0CSi .9 During each access request at 
time t in Phase II, steps (1) & (2) of the protocol are 
identical to those in pNFS-AKE-II. In step (3), however, C 
can directly establish a secure session with Si by computing 
skj,zias follows: 

 
skj,zi= F2(Kj−1CSi; IDC; IDSi; j; sid; z) 

 
wherej _ 1 is an increasing counter denoting the j-th session 
between C and Si with session key skj,1 i. Both C and Si then 
set  
KjCSi= F1(Kj−1CSi; j) 

 
and update their internal states. Note that here we use two 
different key derivation functions F1 and F2 to compute 
KjCSiand skj,zi, respectively. Our design can enforce 

independence among different session keys. Even if the 
adversary has obtained a session key skj,1i, the adversary 
cannot derive Kj−1 CSior KjCSi. Therefore, the adversary 
cannot obtain skj+1,zior any of the following session keys. It 
is worth noting that the shared state KjCSishould never be 
used as the session key in real communications, and just 
like the long-term secret key, it should be kept at a safe 
place, since otherwise, the adversary can use it to derive all 
the subsequent session keys within the validity period (i.e., 
KjCSican be regarded as a medium-term secret key material). 
This is similar to the situation that once the adversary 
compromises the long-term secret key, it can  
learn all the subsequence sessions.  
However, we stress that knowing the state information 
KjCSiallows the adversary to compute only the subsequence 

sessionkeys (i.e., skj+1,zi; skj+2,zi; _ _ _ ) within a validity 
period, butnot the previous session keys (i.e., sk1, i; sk2,zi; _ _ 

_ ; skj,zi)within the same period. Our construction achieves 
thisby making use of one-way hash chains constructed 
usingthe pseudo-random function F1. Since knowing 
KjCSidoes not help the adversary in obtaining the previous 
states(Kj−1CSi;Kj−2CSi; :::;K0C Si ), we can prevent the 
adversary from  
obtaining the corresponding session keys. Also, since 
compromiseof KMSior KCM does not reveal the initial state 
K0CSiduring the Diffie-Hellman key exchange, we can 

achieve fullforward secrecy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3 Specification of pNFS- AKE-III (With full forward 
secrecy and escrow free) 

 
V. PERFORMANCE EVALUATION 

A. Computational Overhead  
We consider the computational overhead for w 
accessrequests over time period v for a metadata server M, a 
client C, and storage devices Si for i 2 [1;N]. We ssume that 
a layout _ is of the form of a MAC, and the computational 
cost for authenticated symmetric encryption E is similar to 
that for the non-authenticated version E.10 Table I gives a 
comparison between Kerberos-based pNFS and our 
protocols in terms of the number of cryptographic 
operations required for executing the protocols over time 
period v. To give a more concrete view, Table II provides 
some estimation of the total computation times in seconds  
(s) for each protocol by using the Crypto++ benchmarks 
obtained on an Intel Core 2 1.83 GHz processor under 
Windows Vista in 32-bit mode [12]. We choose AES/CBC 
(128-bit key) for encryption, AES/GCM (128-bit, 64K 
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tables) for authenticated encryption, HMAC(SHA-1) for 
MAC, and SHA-1 for key derivation. Also, Diffie-Hellman 
exponentiations are based on DH 1024-bit key pair 
generation. Our estimation is based on a fixed message size 
of 1024 bytes for all cryptographic operations, and we 
consider the following case: 
 
• N = 2n and w = 50 (total access requests by C withinv);  

• C interacts with 103 storage devices concurrently for each 

access request, i.e. n = 103;  
• M has interacted with 105 clients over time period v; and  
• eachSi has interacted with 104 clients over time period v. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

server’s perspective in terms of supporting a large number 
of clients is further illustrated in the left graph of Figure 6 
when we consider each client requesting access to an 
average of n = 103 storage devices. 

 
Moreover, the additional overhead for C (and all Si) for 
achieving full forward secrecy and escrow-freeness using 
our techniques are minimal. The right graph of Figure 6 
shows that our pNFS-AKE-III protocol has roughly similar 
computational overhead in comparison with Kerberos-pNFS 
when the number of accessed storage devices is small; and 
the increased computational overhead for accessing 103 
storage devices in parallel is only roughly 1/500 of a second 
compared to that of Kerberos-pNFS—a very reasonable 
trade-off between efficiency and security. The small 
increase in overhead is partly due to the fact that some of 
our cryptographic cost is amortized over a time period v 
(recall that and for each access request at time t, the client 
runs only Phase II of the protocol). 

 
On the other hand, we note that the significantly 
highercomputational overhead incurred by Si in pNFS-
AKE-II is largely due to the cost of Diffie-Hellman 
exponentiations. This is a space-computation trade-off as 
explained in Section V-B (see Section VII-C for further 

 
Table II shows that our protocols reduce the workload of in 
the existing Kerberos-based protocol by up to 
approximately 54%. This improves the scalability of the 
metadata server considerably. The total estimated 
computational cost for M for serving 105 clients is 8:02 _ 
104 s (_ 22.3 hours) in Kerberos-based pNFS, compared 
with 3:68 _ 104 s (_ 0.2 hours) in pNFS-AKE-I and 3:86 _ 
104 s (_ 10.6 hours) in pNFS-AKE-III. In general, one can 
see from Table I that the workload of M is always reduced 
by roughly half for any values of (w; n;N). The scalability 
of our protocols from the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

discussion on key storage). Nevertheless, 256 s is an 
average computation time for 103 storage devices over time 
period v, and thus the average computation time for a 
storage device is still reasonably small, i.e. less than 1/3 of a 
second over time period v. Moreover, we can reduce the 
computational cost for Si to roughly similar to that of pNFS-
AKE-III if C pre-distributes its gcvalue to all relevant Si so 
that they can pre-compute the gcsivalue for each time period 
v. 

 
B. Communication Overhead  
Assuming fresh session keys are used to secure 
communications between the client and multiple storage 
devices, clearly all our protocols have reduced bandwidth 
requirements. This is because during each access request, 
the client does not need to fetch the required authentication 
token set from M. Hence, the reduction in bandwidth 
consumption is approximately the size of n authentication 
tokens. 

 
C. Key Storage  
We note that the key storage requirements for 
KerberospNFS and all our described protocols are roughly 
similar from the client’s perspective. For each access 
request, the client needs to store N or N + 1 key materials 
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(either in the form of symmetric keys or Diffie-Hellman 
components) in their internal states. However, the key 
storage requirements for each storage device is higher in 
pNFS-AKE-III since the storage device has to store some 
key material for each client in their internal state. This is in 
contrast to Kerberos-pNFS, pNFS-AKE-I and pNFS-AKE-
II that are not required to maintain any client key 
information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

VI. CONCLUSIONS  
We proposed three authenticated key exchangeprotocols for 
parallel network file system (pNFS). Our protocols offer 
threeappealing advantages over the existing Kerberos-based 
pNFSprotocol. First, the metadata server executing our 
protocolshas much lower workload than that of the 
Kerberos-basedapproach. Second, two our protocols 
provide forward secrecy:one is partially forward secure 
(with respect to multiplesessions within a time period), 
while the other is fully forwardsecure (with respect to a 
session). Third, we have designed aprotocol which not only 
provides forward secrecy, but is alsoescrow-free. 
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