
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

27

All Rights Reserved © 2016 IJARTET

EFFICIENT ERROR DETECTION AND CORRECTION BY

COMBINED BLOOM FILTER

PRIYA.M

P.G Scholar, ECE, AVS Engineering College, Salem, Tamil Nadu, India

Mpriya.pretty3@gmail.com

ABSTRACT-Bloom filter is effective, space-

efficient data structure for concisely

representing a data set and supporting

approximate membership queries and

provides a fast way to check whether a given

element belongs to a set. In this brief, it is

shown that BFs can be used to detect and

correct errors in their associated data set.

This allows a synergetic reuse of existing

BFs to also detect and correct errors. This is

illustrated through an example of a

counting BF used for IP traffic

classification.

1. INTRODUCTION

 Bloom filters (BFs) provide a simple and

effective way to check whether an element

belongs to a set . They are used in many

networking applications as well in computer

architectures . The BFs are also used in large

databases (e. g. , Google Bigtable uses it to

reduce the disk lookups).The basic structure

of BFs has also been extended over the

years. For example, counting BFs (CBFs)

were introduced to allowremoval of

elements fromthe BF. To optimize the

transmission over the network, another

extension known as compressed Bloom

filters was proposed. Recently Bloom filter

(Biff) codes that are based on BFs have been

proposed to perform error correction in large

data sets .In most cases, BFs are

implemented using electronic circuits . The

contents of a BF are commonly stored in a

high speed memory and required processing

is done in a processor or in dedicated

circuitry. The set used to construct the BF is

also commonly stored in a lower speed

memory[1]-[3].

The reliability of electronic circuits is

becoming a challenge as technology scales.

Errors caused by interferences, radiation,

and other effects become more common.

Therefore, mitigation techniques are used at

different levels to ensure that the circuits

continue to operate reliably. For

BFimplementation, memories are a critical

element.For memories, permanent errors and

defects are commonly corrected using spare

rows and columns . However, soft errors

caused for example by radiation can affect

any memory cell changing its value during

circuit operation. Soft errors do not produce

damage to the

memory device that continues to operate

correctly but has the wrong value in the

affected cell . To deal with soft errors, the

use of a per word parity bit or more

advanced error correction codes (ECCs) has

been common in memories for many years .

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

28

All Rights Reserved © 2016 IJARTET

 1.1 ERROR CORRECTION:

In information theory and coding

theory with applications in computer

science and telecommunication, error

detection and correction or error control are

techniques that enable reliable delivery

of digitaldata , unreliable communication

channels. Many communication channels

are subject to channel noise, and thus errors

may be introduced during transmission from

the source to a receiver. Error detection

techniques allow detecting such errors,

while error correction enables reconstruction

of the original data in many cases. Christo

Ananth et al. [2] discussed about Improved

Particle Swarm Optimization. The fuzzy

filter based on particle swarm optimization

is used to remove the high density image

impulse noise, which occur during the

transmission, data acquisition and

processing. The proposed system has a

fuzzy filter which has the parallel fuzzy

inference mechanism, fuzzy mean process,

and a fuzzy composition process. In

particular, by using no-reference Q metric,

the particle swarm optimization learning is

sufficient to optimize the parameter

necessitated by the particle swarm

optimization based fuzzy filter, therefore the

proposed fuzzy filter can cope with particle

situation where the assumption of existence

of “ground-truth” reference does not hold.

The merging of the particle swarm

optimization with the fuzzy filter helps to

build an auto tuning mechanism for the

fuzzy filter without any prior knowledge

regarding the noise and the true image. Thus

the reference measures are not need for

removing the noise and in restoring the

image. The final output image (Restored

image) confirm that the fuzzy filter based on

particle swarm optimization attain the

excellent quality of restored images in term

of peak signal-to-noise ratio, mean absolute

error and mean square error even when the

noise rate is above 0.5 and without having

any reference measures.If only error

detection is required, a receiver can simply

apply the same algorithm to the received

data bits and compare its output with the

received check bits; [4],[5],[6]if the values

do not match, an error has occurred at some

point during the transmission. In a system

that uses a non-systematic code, the original

message is transformed into an encoded

message that has at least as many bits as the

original message.

Good error control performance

requires the scheme to be selected based on

the characteristics of the communication

channel. Common channel models include

memory-less models where errors occur

randomly and with a certain probability, and

dynamic models where errors occur

primarily in bursts. Consequently, error

detecting and correcting codes can be

generally distinguished between random

error detecting / correcting and burst error

detecting/correcting. Some codes can also be

suitable for a mixture of random errors and

burst errors.

Error detection is most commonly

realized using a suitable hash

function (or checksum algorithm). A hash

function adds a fixed-length tag to a

message, which enables receivers to verify

the delivered message by recomputing the

tag and comparing it with the one provided.

There exists a vast variety of different hash

function designs. However, some are of

particularly widespread use because of

either their simplicity or their suitability for

detecting certain kinds of errors (e.g.,

the cyclic redundancy check's performance

in detecting burst errors).

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

29

All Rights Reserved © 2016 IJARTET

A random-error-correcting

code based on minimum distance coding can

provide a strict guarantee on the number of

detectable errors, but it may not protect

against a preimage attack. A repetition code,

described in the section below, is a special

case of error-correcting codes: although

rather inefficient, a repetition code is

suitable in some applications of error

correction and detection due to its

simplicity. Any error-correcting code can be

used for error detection. A code

with minimum Hamming distance, d, can

detect up to d − 1 errors in a code word.

Using minimum-distance-based error-

correcting codes for error detection can be

suitable if a strict limit on the minimum

number of errors to be detected is desired.

Codes with minimum[7],[8],[9],[10]

Hamming distance d = 2 are degenerate

cases of error-correcting codes, and can be

used to detect single errors. The parity bit is

an example of a single-error-detecting code.

An error-correcting code (ECC) or

forward error correction (FEC) code is a

process of adding redundant data, or parity

data, to a message, such that it can be

recovered by a receiver even when a number

of errors (up to the capability of the code

being used) were introduced, either during

the process of transmission, or on storage.

Since the receiver does not have to ask the

sender for retransmission of the data,

a backchannel is not required in forward

error correction, and it is therefore suitable

for simplex communicationsuch

as broadcasting. Error-correcting codes are

frequently used in lower-

layer communication, as well as for reliable

storage in media such as CDs, DVDs, hard

disks, and RAM.

Error-correcting codes are usually

distinguished between convolutional

codes and block codes: Convolutional

codes are processed on a bit-by-bit basis.

They are particularly suitable for

implementation in hardware, and the Viterbi

decoder allows optimal decoding. Block

codes are processed on a block-by-

block basis. Early examples of block codes

are repetition [11],[12] codes, Hamming

codes and multidimensional parity-check

codes. They were followed by a number of

efficient codes, Reed–Solomon codes being

the most notable due to their current

widespread use. Turbo codes and low-

density parity-check codes (LDPC) are

relatively new constructions that can provide

almost optimal efficiency.

 1.2 SOFT ERRORS:

In electronics and computing, a soft

error is a type of error where a signal or

datum is wrong. Errors may be caused by

a defect, usually understood either to be a

mistake in design or construction, or a

broken component. A soft error is also a

signal or datum which is wrong, but is not

assumed to imply such a mistake or

breakage. After observing a soft error, there

is no implication that the system is any less

reliable than before. In the spacecraft

industry this kind of error is called a single-

event upset. In a computer's memory

system, a soft error changes an instruction in

a program or a data value. Soft errors

typically can be remedied by cold

booting the computer. A soft error will not

damage a system's hardware; the only

damage is to the data that is being

processed.

There are two types of soft errors, chip-

level soft error and system-level soft error.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

30

All Rights Reserved © 2016 IJARTET

Chip-level soft errors occur when the

radioactive atoms in the chip's material

decay and release alpha particles into the

chip. Because an alpha particle contains a

positive charge and kinetic energy, the

particle can hit a memory cell and cause the

cell to change state to a different value. The

atomic reaction is so tiny that it does not

damage the actual structure of the chip.

System-level soft errors occur when the data

being processed is hit with a noise

phenomenon, typically when the data is on a

data bus. The computer tries to interpret the

noise as a data bit, which can cause errors in

addressing or processing program code. The

bad data bit can even be saved in memory

and cause problems at a later time.

 1.3 OVERVIEWOF BFS

A BF is constructed using a set of k

hash functions to access an array of m bits.

The hash functions h 1 , h2 , . . . , hk map an

input element x to one of the m bits. The

following two operations are defined in a

BF.

1) Insertion: To insert an element

x in the BF, the bits in the

array that correspond to the

positions h 1 (x) , h2 (x) , …,

hk (x) are set to one.

2) Query: To query for an

element x in the BF, the bits

in the array that correspond

to the positions h 1 (x) , h2 (x)

, …, hk (x) are read and if and

only if all of them are one,

the element is considered to

be in the BF.

This operation guarantees that if an

element has been added to the BF, it will be

found when a query for it is done. However,

a BF can produce false positives when a

query for an element that has not been added

to the BF is done. That is an element is

incorrectly classified as being stored in the

BF when in fact is not in the element set.

This can occur if other elements have set to

one the positions that correspond to the hash

values of that element.The hash functions

are uniformly distributed, after inserting n

elements in the BF, the probability p0 (n)

that a given bit in the array is zero can be

approximated as

 Therefore, the probability of a false

positive can be approximated as

It can be observed that pfp depends on (

1 −p0 (n)) and k. The first expression gives

the probability that an element in the CBF

has a value different than zero and is

commonly known as the load factor. [13]-

[16]The load factor gives an indication of

how many elements have been inserted in

the CBF and also of the false positive

probability. The load factor will be used in

the experiments presented in this brief and is

defined as

A problem with BFs is that elements

cannot be easily removed. This is because a

position with a one in the array can be

shared by several elements and thus clearing

the h 1 (x) , h2 (x) , …, hk (x) positions for

an element x may also affect other elements

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

31

All Rights Reserved © 2016 IJARTET

in the BF. To address this issue,

CBFs which are a generalization of BFs

were introduced. In a CBF, the array of m

bits is replaced with an array of integers of b

bits and the operations are defined as

follows.

1) Insertion: To insert an element x in

the CBF, the integers in the array that

correspond to the positions h 1 (x) , h2 (x) ,

…, hk (x) are incremented by one.

2) Query: To query for an element x in

the CBF the integers in the array that

correspond to the positions h 1 (x) , h2 (x) ,

…, hk (x) are read and if and only if all of

them are larger than zero the element is

considered to be in the CBF.

3) Removal: To remove an element x

from the CBF, the integers in the array that

correspond to the positions h 1 (x) ,h2 (x) ,

…, hk (x) are decremented by one.

The use of integers instead of bits

allows the removal of elements as now each

position in the array stores the number of

elements that share that position. The false

positive rate of a properly dimensioned CBF

is the same as that of a standard BF.

 1.4 PROPOSED SCHEME

The proposed scheme is based on the

observation that a CBF,in addition to a

structure that allows fast membership check

to an element set, is also in a way a

redundant representation of the element set.

Therefore, this redundancy could possibly

be used for error detection and correction.

To explore this idea, a common

implementation of CBFs where the elements

of the set are stored in a slow memory and

the CBF is stored in a faster memory is

considered. In particular, it is assumed that

the elements of the set are stored in DRAM

while the CBF is stored in a cache . The

reasoning behind this is that the CBF is

accessed frequently and needs a fast access

time to maximize performance, while the

elements of the set are only accessed when

elements are read, added or removed and

therefore the access time is not an issue. It

should also be noted that when the entire

element set is stored in a slow memory, no

incorrect deletions can occur as they would

be detected when removing the element

from the slow memory[17]-[19].

Typically, memories are protected with

a per word parity bit or with a single bit

error correction code . This is based on the

observation that most errors affect a single

bit or even if they affect multiple bits, the

errors can be spread among different words

by

the use of interleaving . In addition, soft

errors are rare events so that the time

between errors is typically large . The arrival

rate for terrestrial applications is in the order

of at least days or weeks and therefore, it is

commonly assumed that errors are isolated.

That is, by the time a soft error arrives any

previous soft error has been corrected or

detected. This is an assumption that is

needed, for example, when single bit error

correction codes are used.

In the following, one of these two most

common protection options is used. In

particular, it is assumed that both the

DRAMand the cache are protected with a

per word parity bit that can detect single

errors. As when using single bit error

correction codes, it is also assumed that

errors are isolated.

The goal for this implementation is to

achieve the correction of single bit errors

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

32

All Rights Reserved © 2016 IJARTET

using the CBF. That is, the CBF

would enable single bit error correction

without incurring in the cost of adding an

ECC to the memories.

The first step to achieve error correction

is to detect errors. This is done by checking

the parity bit when accessing either the

DRAM or the cache. To ensure earlier

detection of errors, the use of scrubbing to

periodically read the memories could be

considered . Once an error is detected, a

correction procedure is triggered. If the error

occurs in the CBF, it can be corrected by

clearing the CBF and reconstructing it using

the element set. If the error occurs in the

element set, the procedure is more complex

and can be divided in two phases that are

described in the following sections. The idea

is that the simpler and faster procedure is

used first and only when it is unable to

correct the error, the second more complex

error correction procedure is used

subsequently

A. Simple Procedure for the Correction of

Errors in the Element Set

To present the simple correction

procedure, let us assume that a single bit

error affects element x and that it is detected

using the parity bit. Therefore, xe is read

fromthe memory. The correct value x has to

be xe if the error affected the parity bit. If

the error affected the ith data bit, the correct

value will be xem(i) where xem(i) is the value

read (xe) with the ith bit inverted. To

determine which of those is in fact the

correct value x, the candidates [xe and all the

xem(i)] can be tested for membership to the

CBF. If only one of the candidates is found

in the CBF, then no false positives have

occurred and the value found is the correct

one. Instead, if more than one candidate is

found, the procedure is unable to find the

correct value due to the occurrence of false

positives. . This simple and fast procedure

requires only l + 1 queries to the CBF,

where l is the number of bits in each element

of the set. However, the correction rate that

can be achieved depends on the false

positive rate of the CBF. In particular, the

probability that an error can be corrected

using this procedure can be approximated as

which is the probability that none of the

l candidates that are not x return a false

positive on a query. The above formula does

not take into account that some elements on

the set may only differ in one or two bits

from another element in the set. In that case,

the proposed correction procedure may fail

as one of the candidates may also be a valid

element and therefore, the advanced

procedure must be used. This effect will be

heavily dependent on the properties of the

elements in the set and will therefore be

application dependent. In any case, to

account for it, the probability given by (4)

should be used as an upper bound rather

than an approximation.

B. Advanced Procedure for the

Correction of Errors in the Element Set

The correction process starts by making

a copy of the CBF in DRAM memory. Then,

all the elements in the set except for the

erroneous one are removed fromthe CBF.

This will leave a CBF with only the values

that correspond to the original value of the

element x . Once that is done, the candidates

[xe and all the xem(i)] can be queried over the

CBF that has only x as an entry. As in the

previous procedure, if only one of the

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

33

All Rights Reserved © 2016 IJARTET

candidates matches the CBF, that is

the correct value. If more than one candidate

matches the CBF then the error cannot be

corrected. The probability that a given value

x and another value y produce exactly the

same values of the hash functions h 1 , h2 , . .

. , hk

can be approximated as

Therefore, the correction probability for this

advanced procedure can be approximated as

which will be very close to 100% in many

practical scenarios as m is typically

large.The increased correction rate comes at

the cost of a more complex correction

procedure that needs the replication of the

CBF, the removal of all the entries except

the erroneous one (n −1), and finally the

query for the l + 1 candidates. However, as

soft errors are rare events, and the procedure

is only needed when the simple procedure

presented before cannot correct an error, the

scheme can be useful in real

applications[19]-[21].

3 SYSTEM ANALYSIS

Enhancement Block:

Fig 1.bloom filter

Bloom Filter Algorithm:

3.1 Existing system:

In most cases, BFs are implemented

using electronic circuits. The contents of

a BF are commonly stored in a high

speed memory and required processing is

done in a processor or in dedicated

circuitry. The set used to construct the

BF is also commonly stored in a lower

speed memory. The reliability of

electronic circuits is becoming a

challenge as technology scales. Errors

caused by interferences, radiation, and

other effects become more common.

Therefore, mitigation techniques are

used at different levels to ensure that the

circuits continue to operate reliably. For

BF implementation, memories are a

critical element. For memories,

permanent errors and defects are

commonly corrected using spare rows

and columns. However, soft errors

caused for example by radiation can

affect any memory cell changing its

value during circuit operation. Soft errors

do not produce damage to the memory

device that continues to operate correctly

but has the wrong value in the affected

cell.

To deal with soft errors, the use of a

per word parity bit or more advanced

error correction codes (ECCs). The BFs

have also been proposed to mitigate

errors in electronic circuits. Use of a

CBF is proposed to detect and correct

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

34

All Rights Reserved © 2016 IJARTET

errors in content addressable

memories (CAMs). In this case, the CBF

is used in parallel with a CAM and the

objective is to detect errors in the CAM

entries. This is done by checking the

results of the CAM and the CBF to

ensure that they are consistent.

 Once an error is detected, a

correction procedure is initiated to

restore the correct value in the affected

CAM entry using an external copy of its

contents.

Disadvantage:

• A problem with BFs is that elements

cannot be easily removed.

• Soft errors occur

• lower speed memory

 A Bloom filter is a space-

efficient data structure used to test

whether an element exists in a given set.

This algorithm is composed of different

hash functions and a long vector of bits.

Initially, all bits are set to 0 at the

preprocessing stage.

 To add an element, the Bloom filter

hashes the element by these hash

functions and gets positions of its vector.

The Bloom filter then sets the bits at

these positions to 1. The value of a

vector that only contains an element is

called the signature of an element. To

check the membership of a particular

element, the Bloom filter hashes this

element by the same hash functions at

run time, and it also generates k positions

of the vector.

 If all of these k bits are set to 1, this

query is claimed to be positive,

otherwise it is claimed to be negative.

The output of the Bloom filter can be a

false positive but never a false negative.

Therefore, some pattern matching

algorithms based on the Bloom filter

must operate with an extra exact-

matching algorithm.

 Fig 2. Bloom fliter algorithm

This algorithm fetches the prefix of a

pattern from the text and hashes it to

generate a signature.

Then, this algorithm checks whether the

signature exists in the bit vector.

If the answer is yes, it shifts the search

window to the right by one character

fXZor each comparison and repeats the

above step to filter out safe data until it

finds a candidate position and launches

exact-matching.

 Fig. (b) Shows how a Bloom

filter builds its bit vector for a pattern set

{erst, ever, there} for two given hash

functions. The filter only hashes all of

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

35

All Rights Reserved © 2016 IJARTET

the pattern prefixes at the

preprocessing stage. Multiple patterns

setting the same position of the bit vector

are allowed.

 Fig. (c) Shows an example of the

matching process. The arrows indicate

the candidate positions. The gray bars

represent the search window that the

Bloom filter actually fetches for

comparison. Both the candidate position

and search window are aligned together.

In step 1, the filter hashes “He” and

mismatches the signature with the bit

vector. The filter then shifts right 1

character and finds the next candidate

position. For the search window “ee”, the

Bloom filter matches the signature and

then causes a false alarm to perform an

exact-matching in steps 2 and 3. The

filter then returns to the filtering stage

and shifts one character to the right in

step 4, which launches a true alarm for

the pattern “ever”.

3.2 MLDD algorithm:

Proposed system:

In this brief, a scheme to exploit

existing CBFs to additionally implement

error detection and correction in the

elements of the set associated with the

CBF is presented. The approach is based

on the concept of algorithmic-based fault

tolerance (ABFT), which proposes to

reuse existing properties or elements of

the system to implement fault tolerance.

In the line of ABFT, the proposed

scheme enables a synergetic reuse of

existing CBFs for error detection and

correction. The scheme assumes that the

elements of the set are stored in a

memory protected with a per word parity

bit and the CBF is used to implement the

correction of single bit errors. The

effectiveness of the scheme is illustrated

using a traffic classification case study.

The basic ideas behind the proposed

technique can also be applied when the

elements of the set are stored in a

memory protected with more advanced

ECCs.

Advantage :

• Elements can be easily remove

• Low cost

• High speed

• Single error correction

The proposed figure -3 fault-

detection method significantly reduces

memory access time when there is no

error in the data read. The technique uses

the majority logic decoder itself to detect

failures, which makes the area overhead

minimal and keeps the extra power

consumption low. The ML

detector/decoder (MLDD) has been

implemented using the difference-set

cyclic codes (DSCCs).

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

36

All Rights Reserved © 2016 IJARTET

Fig 3. Memory system schematic

of an MLDD.

This code is part of the LDPC [

low-density parity-check]codes, and,

based on their attributes, they have the

following properties:

• ability to correct large number

of errors;

• sparse encoding, decoding and

checking circuits synthesizable

into simple hardware;

• modular encoder and decoder

blocks that allow an efficient

hardware implementation;

• systematic code structure for

clean partition of information

and code bits in the memory.

 Fig . 4 tap shift register

The figure 4 shows the basic ML

decoder with an -tap shift register, an

XOR array to calculate the orthogonal

parity check sums and a majority gate for

deciding if the current bit under decoding

needs to be inverted. The nhardware to

perform the error detection is illustrated

as: i) the control unit which triggers a

finish flag when no errors are detected

after the third cycle and ii) the output

tristate buffers. The output tristate

buffers are always in high impedance

unless the control unit sends the finish

signal so that the current values of the

shift register are forwarded to the output.

CONCLUSION:

 The proposed approach can also be used

for traditional BFs but in that case, the

percentage of errors that can be corrected

is much lower.To overcome this problem

our enhancement process can be include

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

37

All Rights Reserved © 2016 IJARTET

with DMC (Decimal matrix code)

process.In this brief, a new application of

BFs has been proposed. The idea is to

use the BFs in existing applications to

also detect and correct errors in their

associated element set. In particular, it is

shown that CBFs can be used to correct

errors in the associated element set. This

enables a cost efficient solution to

mitigate soft errors in applications which

use CBFs.The configuration considered

in this brief is that of a memory protected

with a per word parity bit for which it is

demonstrated that the CBF can be used

to achieve single bit error correction.

This shows how existing CBFs can be

used to achieve error correction in

addition to perform their traditional

membership checking function.The

general idea can also be used when the

memory is protected with more advanced

codes. For example, if an SEC-DED

code is used, the CBF could be used to

correct double errors. In addition, the

simplest part of the error correction

scheme can also be applied to traditional

BFs to achieve some degree of error

detection and correction.

REFERENCES

[1] B. Bloom, “Space/time tradeoffs in

 hash coding with allowable errors,”

 Commun. ACM, vol. 13, no. 7, pp.

 422–426, 1970.

[2] Christo Ananth, Vivek.T,

 Selvakumar.S., Sakthi Kannan.S.,

 Sankara Narayanan.D, “Impulse

 Noise Removal using Improved

 Particle Swarm Optimization”,

 International Journal of Advanced

 Research in Electronics and

 Communication Engineering

 (IJARECE), Volume 3, Issue 4, April

 2014,pp 366-370

[3] A. Moshovos, G. Memik, B. Falsafi,

 and A. Choudhary, “Jetty: Filtering

 snoops for reduced energy

 consumption in SMP servers,” in

 Proc. Annu.Int. Conf. High-Perform.

 Comput. Archit., Feb. 2001, pp. 85–

 96.

[4] C. Fay et al., “Bigtable: A distributed

 storage system for structured data,”

 ACM TOCS, vol. 26, no. 2, pp. 1–4,

 2008.

[5] F. Bonomi, M. Mitzenmacher, R.

 Panigrahy, S. Singh, and G.

 Varghese,“An improved construction

 for counting bloom filters,” in Proc.

 14thAnnu. ESA, 2006, pp. 1–12.

[6] M. Mitzenmacher, “Compressed

 bloom filters,” in Proc. 12th Annu.

 ACMSymp. PODC, 2001, pp. 144–

 150.

[7] M. Mitzenmacher and G. Varghese,

 “Biff (Bloom Filter) codes: Fast error

 correction for large data sets,” in

 Proc. IEEE ISIT, Jun. 2012, pp. 1–32.

[8] S. Elham, A. Moshovos, and A.

 Veneris, “L-CBF: A low-power, fast

 counting Bloom filter architecture,”

 IEEE Trans. Very Large Scale Integr.

 (VLSI) Syst., vol. 16, no. 6, pp. 628–

 638, Jun. 2008.

[9] T. Kocak and I. Kaya, “Low-power

 bloom filter architecture for deep

 packet inspection,” IEEE Commun.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 22, April 2016

38

All Rights Reserved © 2016 IJARTET

 Lett., vol. 10, no. 3, pp. 210–

212,

 Mar. 2006.

[10] S. Dharmapurikar, H. Song, J.

 Turner, and J. W. Lockwood, “Fast

 hash table lookup using extended

 bloom filter: An aid to network

 processing,”in Proc.

 ACM/SIGCOMM, 2005, pp. 181–

 192.

[11] N. Kanekawa, E. H. Ibe, T. Suga,

 and Y. Uematsu, Dependability in

 Electronic Systems: Mitigation of

 Hardware Failures, Soft Errors, and

 Electro-Magnetic Disturbances.

 New York, NY, USA: Springer-

 Verlag,2010.

[12] D. Bhavsar, “An algorithm for row-

 column self-repair of RAMs andits

 implementation in the alpha

 21264,” in Proc. Int. Test Conf.,

 1999,pp. 311–318.

[13] M. Nicolaidis, “Design for soft error

 mitigation,” IEEE Trans. Device

 Mater. Rel., vol. 5, no. 3, pp. 405–

 418, Sep. 2005.

[14] C. L. Chen and M. Y. Hsiao, “Error-

 correcting codes for semiconductor

 memory applications: A state-of-the-

 art review,” IBM J. Res. Develop.,

 vol. 28, no. 2, pp. 124–134, 1984.

[15] G. Wang, W. Gong, and R. Kastner,

 “On the use of bloom filters for

 defect maps in nanocomputing,” in

 Proc. IEEE/ACM ICCAD, Nov.

 2006,pp. 743–746.

[16] S. Pontarelli and M. Ottavi, “Error

 detection and correction in content

 addressable memories by using

 bloom filters,” IEEE Trans. Comput.,

 vol. 62, no. 6, pp. 1111–1126, Jun.

 2013.

[17] A. Reddy and P. Banarjee,

 “Algorithm-based fault detection for

 signalprocessing applications,”

 IEEETrans. Comput., vol. 39, no. 10,

 pp. 1304–1308, Oct. 1990.

[18] D. Guo, Y. Liu, X. Li, and P. Yang,

 “False negative problem of

 counting bloom filter,” IEEE Trans.

 Knowl. Data Eng., vol. 22, no. 5,

 pp. 651–664, May 2010.

[19] P. Reviriego, J. A. Maestro, S.

 Baeg, S. J. Wen, and R. Wong,

 “Protection of memories suffering

 MCUs through the selection of the

 optimal interleaving distance,” IEEE

 Trans. Nucl. Sci., vol. 57, no. 4,pp.

 2124–2128, Aug. 2010.

[20] A. M. Saleh, J. J. Serrano, and J. H.

 Patel, “Reliability of scrubbing

 recovery-techniques for memory

 systems,” IEEE Trans. Rel., vol. 39,

 no. 1, pp. 114–122, Apr. 1990.

[21] L. Fan, P. Cao, J. Almeida, and A.

 Z. Broder, “Summary cache:

 A scalable wide-area Web cache

 sharing protocol,” in Proc. ACM

 SIGCOMM, Sep. 1998, pp. 254–265.

