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Abstract—For decades, photographs have 

been used  to  document  space-time  events 

and they have often served as evidence in 

courts. Although photographers are able to 

create composites of analog pictures, this 

process is very time consuming. Today, 

however, powerful digital image editing 

software makes image modifications 

straightforward.  This  undermines   our   trust 

in photographs and, in particular, questions 

pictures as  evidence  for  real-world  events.  

In this paper, we analyze one of the most 

common  forms  of   photographic 

manipulation, known as image composition 

or splicing. We propose a forgery detection 

method  that  exploits   subtle  inconsistencies 

in the color of the  illumination  of  images.  

Our  approach  is   machine-learning   based 

and requires minimal user interaction. The 

technique  is  applicable   to   images 

containing two or  more  people and  requires 

no expert interaction for the tampering 

decision. To achieve this, we incorporate 

information from physics-         and 

statistical-based illuminant estimators  on 

image regions  of  similar  material.  From 

these illuminant  estimates,  we  extract 

texture- and edge-based features which  are 

then provided  to  a  machine-learning 

approach  for   automatic   decision-making. 

The  classification  performance  using   an 

SVM meta-fusion classifier is promising. It 

yields detection rates of 86% on a new 

benchmark  dataset  consisting   of   200 

images, and 83% on 50 images that were 

collected from  the  Internet. 

 

I. Introduction 

Every  day, millions of  digital  documents are 

produced by a variety of devices and 

distributed by newspapers, magazines, 

websites and television. In all these 

information channels, images are a 

powerful tool for communication. 

Unfortunately, it is not difficult to use 

computer graphics and image processing 

techniques to manipulate images. How we 

deal with 

photographic manipulation raises a host  of 

legal and ethical questions that must be 

addressed [1]. However, before thinking of 

taking appropriate  actions  upon  a 

questionable image, one must  be  able  to 

detect that  an  image has been   altered. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. How can one assure the authenticity of  a 

photograph? Example of a spliced image involving people. 

 

Image composition (or splicing) is one  of  

the most common image manipulation 

operations. One such example is shown in 

Fig. 1, in which the girl on the right is 

inserted. Although this image shows a 

harmless manipulation case, several more 

controversial cases have  been reported. 

In this spirit, Riess and Angelopoulou [2] 

proposed to analyze  illuminant  color  

estimates from local image regions. 

Unfortunately, the interpretation of their 

resulting so-called illuminant maps  is left to 605 
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human experts. As  it turns out, this  decision  

is, in practice, often challenging. Moreover, 

relying on visual assessment can be 

misleading, as the human visual system  is 

quite inept at judging illumination 

environments in pictures [3]. Thus, it is 

preferable  to  transfer   the   tampering 

decision to an objective algorithm. In  this 

work, we make an important step towards 

minimizing user interaction for an illuminant-

based 

tampering decision-making. We propose a 

new  automatic  method   that    is   also 

significantly more  reliable than   earlier 

approaches. Quantitative evaluation shows 

that   the proposed   method   achieves  a 

detection  rate  of  86%,  while   existing 

illumination-based  work is  slightly  better 

than  guessing. We exploit   the   fact    that 

local     illuminant  estimates  are  most 

discriminative when comparing objects of  

the same  (or  similar)  material.  Thus,  we 

focus  on  the  automated  comparison  of 

human skin, and more specifically faces, to 

classify the illumination  on  a   pair   of 

faces  as   either consistent or  inconsistent. 

In summary,  the  main  contributions  of this 

explanation of all the algorithmic steps is 

given in Section IV. In Section V, we 

introduce the proposed benchmark  

database and present experimental results. 

Conclusions and potential future work are 

outlined in Section VI. 

 

II. Related work 

Illumination-based methods for forgery 

detection are either geometry-based or color-

based.    Geometry-based    methods focus at 

detecting inconsistencies in  light source 

positions between specific objects  in the scene 

[5]–[11]. Color-based methods  search  for  

inconsistencies   in   the interactions between 

object color and light color [2], [12], [13] 

direction. To achieve this,  a 3- Two methods 

have  been  proposed that use the direction of 

the incident light for exposing digital forgeries. 

Riess and Angelopoulou [2] followed a 

different approach by using a physics-based 

color constancy  algorithm  that  operates   on 

partially specular pixels.  In  this  approach,  

the automatic detection of highly specular 

regions  is  avoided.  The authors  propose 

to 

work are: segment the image to estimate the 
• Interpretation of the illumination illuminant color locally per segment. 
distribution   as  object   texture   for  feature 

computation. 

•A  novel   edge-based   characterization 

method for illuminant maps which explores 

edge attributes related to the illumination 

process. 
• The creation of a benchmark dataset 

comprised of 100 skilfully created forgeries 

and 100 original photographs. 

In Section II, we briefly review  related work  

in color constancy and illumination-based 

detection of image splicing.  In  Section  III, 

we  present  examples  of  illuminant   maps 

and highlight the challenges in their 

exploitation. An overview of the proposed 

methodology,     followed      by     a    detailed 

Recoloring each  image  region  according  to 

its      local      illuminant      estimate      yields 

a so-called illuminant map .Implausible 

illuminant color estimates point towards a 

manipulated region.  Unfortunately,  the 

authors do not provide a numerical decision 

criterion for tampering detection. Thus, an 

expert is left with  the  difficult  task  of 

visually examining an illuminant map for 

evidence of tampering. The involved 

challenges are  further  discussed  in  Section  

In the field  of  color  constancy,  descriptors 

for the  illuminant  color  have  been 

extensively studied. Most research in color 

constancy  focuses  on  uniformly  illuminated 



 
 

 

 

scenes containing a  single  dominant 

illuminant. However,  in  order  to  use  the 

color of the incident illumination as a sign of 

image tampering, we require multiple, 

spatially-bound illuminant estimates. So far, 

limited research has been done in  this 

direction. The work by Bleier et al. indicates 

that many off-the-shelf single-illuminant 

algorithms do not scale  well  on  smaller 

image regions. Thus, problem-specific 

illuminant  estimators are  required. 

Gijsenij  et  al.  [21]  proposed  a   pixel  wise 

illuminant estimator. It allows to segment an 

image into regions illuminated by distinct 

illuminates. Differently  illuminated  regions 

can have crisp transitions,  for  instance 

between sunlit and shadow areas.  While this  

is  an  interesting  approach.  a  single 

illuminant estimator can   always fail. 

 

Fig. 2. Example illuminant map that directly shows an 

inconsistency. 

Thus, for forensic purposes, we prefer a 

scheme that combines the results of  

multiple illuminant estimators. Earlier, 

Kawakami et al. [22] proposed a physics-

based approach that is custom-tailored for

 discriminating 

shadow/sunlit regions. However, for our 

work, we consider the 

restriction to outdoor images overly limiting. 

In this paper, we build upon the ideas by [2] 

and [13]. We use the relatively rich 

illumination information provided by both 

physics-based and statistics-based color 

constancy methods as in [2], [23]. Decisions 

with respect to the illuminant color 

estimators are completely taken away from 

the user, which differentiates this paper 

from prior work. 

III. Challenges in exploiting 

illuminant maps 
To    illustrate    the    challenges    of   directly 

exploiting illuminant estimates, we briefly 

examine the illuminant  maps  generated  by  

the method of  Riess  and  Angelopoulou  [2]. 

In  this  approach,  an  image  is  subdivided 

into regions of similar  color  (super  pixels). 

An    illuminant    color     is     locally 

estimated using the pixels within each 

superpixel (for details, see [2] and Section IV-

A). Recoloring each superpixel with its local 

illuminant color estimate yields a so- called 

illuminant map. A human expert can then 

investigate the input image and the illuminant  

map   to  detect inconsistencies. 

Fig. 2 shows an example image and its 

illuminant map,  in  which  an  inconsistency 

can  be  directly  shown:  the  inserted  

mandarin orange in the top right exhibits 

multiple green spots in  the  illuminant  map. 

All other fruits in the scene show a gradual 

transition from red to blue. The inserted 

mandarin orange  is  the  only  one  that 

deviates from   this pattern. 

In practice, however, such analysis is often 

challenging, as shown in Fig. 3. The top left 

image is original,  while  the  bottom image is  

a composite  with  the  right-most  girl  

inserted. Several  illuminant  estimates  are 

clear outliers, such as the hair of  the  girl on 

the left in the bottom image,  which  is 

estimated as strongly red illuminated. Thus, 

from  an  expert’s  viewpoint,  it  is  reasonable 

to discard  such  regions  and  to  focus  on 

more reliable  regions, e.g., the  faces. In Fig.  

3, however, it is difficult  to  justify  a 

tampering decision by comparing the color 

distributions in the facial regions. It is also 

challenging to argue,  based  on  these 

illuminant maps, that  the  right-most  girl  in 

the bottom image has been  inserted, while, 

e.g.,  the  right-most  boy  in  the   top   image 

is 



 
 

 

 

original. Christo Ananth et al. [4] proposed a 

system which uses intermediate features of 

maximum overlap wavelet transform (IMOWT) as 

a pre-processing step. The coefficients derived 

from IMOWT are subjected to 2D histogram 

Grouping. This method is simple, fast and 

unsupervised. 2D histograms are used to obtain 

Grouping of color image. This Grouping output 

gives three segmentation maps which are fused 

together to get the final segmented output. This 

method produces good segmentation results when 

compared to the direct application of 2D 

Histogram Grouping. IMOWT is the efficient 

transform in which a set of wavelet features of the 

same size of various levels of resolutions and 

different local window sizes for different levels 

are used. IMOWT is efficient because of its time 

effectiveness, flexibility and translation invariance 

which are useful for good segmentation results. 

 

 

Fig. 3. Example illuminant maps for an original image (top) 

and a spliced image (bottom). The illuminant maps  are created 

with the IIC-based illuminant estimator   (see Section IV-A). 

 

The features are designed  to  capture  the 

shape of the superpixels in conjunction with 

the color  distribution. In this spirit, our  goal  

is  to  replace  the  expert-in-the-loop,  y only 

requiring annotations of faces in the image. 

Note that, the estimation of  the  illuminant 

color   is   error-prone   and  affected   by   the 

materials in the scene.  However,  (cf.  Also 

Fig.   2),   estimates   on objects   of   similar 

material exhibit a lower relative  error.  Thus, 

we limit our detector  to skin, and in 

particular to faces. Pigmentation is the most 

obvious difference in skin characteristics 

between  different ethnicities.    

 

IV. Overview and algorithmic 

details 

We classify the  illumination for  each pair   of 

faces in the image as either consistent or 

inconsistent. Throughout the paper, we 

abbreviate illuminant estimation as IE, and 

illuminant maps as IM. The proposed 

method consists of five main components: 

 

1) Dense Local Illuminant Estimation 

(IE): The input image is segmented into 

homogeneous regions. Per illuminant 

estimator, a new image is created where each 

region is colored with the extracted illuminant 

color. This resulting intermediate 

representation is called  illuminant map (IM). 

 

2) Face Extraction: An automated face 

detector can be employed.  We  then  crop 

every bounding box out of each illuminant 

map, so that only the illuminant estimates of 

the  face  regions remain. 

3) Computation  of  Illuminant  Features:  for 

all face regions, texture-based and gradient-

based features are computed  on  the IM 

values. Each one of them encodes 

complementary information for 

classification. 

4) Paired  Face   Features:  Our  goal   is  to 

assess  whether a  pair  of  faces  in  an  image 

is  consistently  illuminated.  For  an  image 

with nf faces, we construct joint  feature 

vectors, consisting of all possible pairs  of 

faces. 

5) Classification: We use a  machine learning 

approach to automatically classify the 

feature vectors. We consider an image as a 

forgery  if at  least  one  pair  of  faces in the 



 
 

 

 

image is classified as inconsistently 

illuminated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Overview  of the  proposed method. 

 

Fig. 4 summarizes these steps. In the 

remainder of this section, we present the 

details of  these components. 

A. Dense Local Illuminant Estimation 

further design of statistical  descriptors  for 

color constancy. We follow an extension of  

this idea, the generalized  gray  world  

approach by van de Weijer et al. [23]. 
T 

To compute a dense    set of localized Let f(X)=(fR(X),fG(X),fB(X)) denote the 
 

illuminant  color  estimates,  the  input  image 

is segmented  into  super  pixels,  i.e.,  regions 

of  approximately  constant  chromaticity, 

using the algorithm by Felzenszwalb and 

Huttenlocher [25]. Per  superpixel,  the  color  

of the illuminant is estimated. We use 

illuminant color estimators: the statistical 

generalized gray world estimates. We obtain 

illuminant maps  by  recoloring  each 

superpixel with the estimated illuminant 

chromaticities       of       each       one        of 

the   estimators. 

Generalized   Gray   World   Estimates:   The 

classical gray world assumption by 

Buchsbaum [26] states that the average 

color of a scene is gray. 

Thus, a deviation of the average of the 

image intensities from the expected gray 

color is due to the illuminant. Although this 

assumption is nowadays considered to be 

overly  simplified  [17],  it  has  inspired the 

observed RGB color of a pixel at location  . 

Van deWeijer et al. s[23] assume purely 

diffuse  reflection  and  linear   camera 

response.  Then, f(X) 

is formed by 

f(X)=ʃΩ e(λ,x)s(λ,x)c(λ)dλ, 

Where Ω denotes the spectrum  of  visible  

light, λ denotes the wavelength of the light, 

e(λ,x) denotes   the     spectrum   of    the 

illuminant,   s(λ,x)   the    surface   reflectance 

of an object, and c(λ)  the  color  sensitivities 

of the camera (i.e., one function per color 

channel). 

B. Face Extraction 

We require bounding  boxes  around all  faces 

in an image that should be part of the 

investigation. For obtaining the bounding 

boxes, we could in  principle  use  an 

automated algorithm, e.g., the  one  by 

Schwartz et al. [30]. 



 
 
 
 

 
Fig. 5. Original image and its gray world map. Highlighted 

regions  in  the  gray  world  map   show a  similar appearance. 

(a) Original. (b) Gray world with highlighted similar parts. 

 

For instance, consider an image where all 

persons of interest are illuminated  by 

flashlight. The illuminates are expected to 

agree with one another. Conversely, assume 

that a  person  in  the  foreground  is 

illuminated by flashlight, and a person in the 

background is illuminated by ambient light. 

Then, a difference in the color of the 

illuminates  is  expected.  Such   differences  

are hard to distinguish in a fully-automated 

manner, but can be  easily  excluded  in  

manual  annotation. 

We illustrate this setup in  Fig.  5.  The  faces  

in Fig.  5(a)  can  be  assumed  to  be  exposed 

to the same illuminant. As Fig.  5(b)  shows, 

the  corresponding  gray  world   illuminant 

map for these two faces also has  similar 

values.  The  parameter  values  were 

previously investigated by Riess and 

Angelopoulou [2], [29]. In this paper, we rely 

on their findings. 

C. Texture Description: SASI Algorithm 

We use the Statistical Analysis of Structural 

Information (SASI) descriptor by  

Carkacioglu and Yarman-Vural [31] to 

extract texture information from illuminant 

maps. Recently, Penatti et al. [32] pointed 

out that SASI performs remarkably well. For 

our application, the most important 

advantage of SASI is its capability of 

capturing small granularities and 

discontinuities in texture patterns. Distinct 

illuminant colors interact differently with the 

underlying surfaces, thus generating 

distinct illumination “texture”. This can be a 

very  fine  texture,  whose subtleties  are best 

captured by SASI. 

SASI is a generic descriptor that measures 

the structural properties of textures. It is 

based on the autocorrelation of horizontal, 

vertical and diagonal pixel lines over an 

image at different scales. Instead of 

computing the autocorrelation for every 

possible shift, only a small number of shifts 

is considered. One autocorrelation is 

computed using a specific fixed orientation, 

scale, and shift. 

Computing the mean and standard deviation 

of all such pixel values   yields   two 

feature dimensions. 

Repeating this computation for varying 

orientations, scales and shifts yields a 128-

dimensional feature vector. As a final step, 

this vector is normalized by subtracting its 

mean value, and dividing  it by its standard 

deviation. For details, please refer to [31]. 

D. Interpretation    of    Illuminant   Edges: 

Hogedge Algorithm 

Differing illuminant estimates in 

neighbouring segments can lead to 

discontinuities in the illuminant map. 

Dissimilar illuminant  estimates can occur 

for a number of reasons: changing 

geometry, changing material, noise, 

retouching or changes in the incident light. 

Thus, one can interpret an illuminant 

estimate as a low-level descriptor of the 

underlying image statistics. We  observed 

that the edges, e.g., computed by a Canny 

edge detector, detect in several cases a 

combination of the segment borders and 

isophotes (i.e., areas of similar incident light 

in the image). When an image is spliced, the 

statistics of these edges is likely to  differ 

from original images. To characterize such 

edge discontinuities, we propose a new 

feature descriptor called HOGedge. It is 

based on the well-known HOG-descriptor, 

and computes visual dictionaries of 

gradient intensities in edge points. The full 

algorithm  is  described  in  the  remainder of 



 
 
 

this section. Fig. 6shows an algorithmic 

overview of the method. We first extract 

approximately equally distributed candidate 

points on the edges of illuminant maps. At 

these points, HOG descriptors are 

computed. 

These descriptors are summarized in a 

visual words dictionary. Each of these steps 

is presented in greater detail in the next 

subsections. 

Extraction  of  Edge   Points:  Given   a    face 

region from an illuminant map, we first 

extract edge points using the Canny edge 

detector [33]. This yields a large number of 

spatially close edge points. To reduce the 

number of points, we filter the Canny output 

using the following rule: starting  from  a 

seed point, we eliminate all other edge 

pixels in a region of interest (ROI) centred 

around the seed point. The edge points that 

are closest to the ROI (but outside of it) are 

chosen as seed points for the next iteration. 

By iterating this process over the entire 

image, we reduce the number of points but 

still ensure that every face has a 

comparable         density of        points. 

 

Fig. 6. Overview of the  proposed H OGedge algorithm. 

 

Fig. 7 depicts an example of the resulting 

points. 

Point Description: We  compute  Histograms 

of Oriented  Gradients (HOG) [34] to describe 

the distribution of the selected edge points. 

HOG is based on  normalized  local  

histograms of  image  gradient  orientations  in 

a dense grid. The HOG descriptor is 

constructed around each of the edge  points. 

The neighbourhood of such an edge point is 

called a cell. Each cell provides a local 1-D 

histogram of quantized gradient directions 

using all cell pixels. To construct the feature 

vector, the histograms of all cells within a 

spatially larger region are combined and 

contrast- 

normalized. We use the HOG output as a 

feature vector  for the  subsequent steps. 

Fig.  7. 

(a) Gray world IM for the  left  face  in Fig. 6(a).  (b) Result of  

the Canny edge detector  when  applied on  this IM. (c)  Final  

edge points after  filtering  using  a  square  region.  (a)  IM 

derived  from  gray  world.  (b)  Canny  Edges.  (c)  Filtered 

Points. 

 

Visual Vocabulary: The number of extracted 

HOG vectors varies depending on the  size 

and structure of the face under examination. 

We use visual dictionaries [35] to obtain 

feature vectors of fixed length. Visual 

dictionaries constitute a robust 

representation,  where each face is  treated 

as a set of region descriptors. The spatial 

location of each region is discarded [36]. To 

construct our visual dictionary, we subdivide 

the training data into feature vectors from 

original and doctored images. Each group is 

clustered in clusters using the -means 

algorithm [37]. Then, a visual dictionary with 

visual words is constructed,  where each 

word is represented by a cluster  centre. 

Thus, the visual dictionary summarizes the 

most  representative  feature  vectors  of  the 



 
 
 

training set. 

The horizontal axis corresponds to different 

feature dimensions, while the vertical axis 

represents the average feature value for 

different combinations of descriptors and 

illuminant maps. From top to bottom, left to 

right: SASI-IIC, HOGedge-IIC, 

SASI-Gray-World, HOGedge-Gray-World. 

E. Face Pair 

To compare  two  faces,  we  combine  the  

same descriptors for each of  the  two  faces. 

For instance, we can concatenate the SASI-

descriptors  that  were  computed  on gray 

world. 

 

Fig. 8. Average signatures from original and spliced images. 

The  idea  is  that  a  feature  concatenation 

from two faces is different when one of the 

faces  is  an  original  and   one   is   spliced. 

For  an  image  containing  nf  faces,  the 

number of face  pairs is (nf (nf -1))/2 

 
The SASI and HOGedge descriptors capture 

two different properties of the face regions. 

From a signal processing point of view, both 

descriptors are signatures with different 

behaviour. Fig. 8 shows a very high-level 

visualization of  the  distinct information that  

is  captured  by  these  two  descriptors.  For 

one of the folds of our experiments (see  

Section  V-C),  we  computed  the  mean value 

and standard deviation per feature  

dimension. For a less cluttered plot, we only 

visualize the feature dimensions with the 

largest difference in the mean  values for 

this fold. This experiment empirically 

demonstrates two points. Firstly, SASI and 

HOGedge, in combination with the IIC-based 

and gray world illuminant maps create 

features that discriminate well between 

original and tampered images, in at least 

some dimensions. Secondly, the 

dimensions, where these features have 

distinct value, vary between the four 

combinations of the feature vectors. We 

exploit this property during classification by 

fusing the output of the classification  on 

both feature sets, as described in the next 

section. 

F. Classification 

We classify the illumination for each pair of 

faces in an image as either consistent or 

inconsistent. Assuming all selected faces 

are illuminated by the same light source, we 

tag an image as manipulated if one pair is 

classified as inconsistent. Individual feature 

vectors, i.e., SASI or HOGedge features on 

either gray world or IIC-based illuminant 

maps, are classified using a support vector 

machine (SVM) classifier with a radial basis 

function (RBF) kernel. 

The information provided by the  SASI  

features  is  complementary  to  the  

information from the  HOGedge  features. 

Thus, we  use  a  machine  learning-based 

fusion technique for improving the detection 

performance.  Inspired  by  the  work  of 

Ludwig et al. [38], we use a late fusion 

technique named SVM-Meta Fusion. We 

classify each combination of illuminant map 

and feature type independently (i.e., SASI-

Gray-World, 

SASI-IIC,HOGedge-Gray-World and 

HOGedge-IIC) using a two-class SVM 

classifier to obtain the distance between the 

image’s   feature  vectors  and   the   classifier 

decision  boundary.  SVM-Meta  Fusion   then 



 

 

 
 

merges the marginal  distances  provided  by  

all individual classifiers to  build  a  new 

feature vector.  Another  SVM classifier. 

 

V. Conclusions and  future work 

In this work, we presented a new method for 

detecting forged images of people using the 

illuminant color. We estimate the illuminant 

color using a statistical gray  edge method 

and a physics-based method which exploits 

the inverse intensity- chromaticity color 

space. We treat these illuminant maps as 

texture maps. We also  extract  information 

on the distribution of  edges on  these maps. 

In order to describe the edge  information,  

we propose a new algorithm based on edge-

points and the HOG descriptor, called 

HOGedge. We        combine these 

complementary cues (texture- and edge-

based) using machine learning late fusion. 

Our results are encouraging, yielding an 

AUC of over 86% correct classification. 

Good results are also achieved over internet 

images     and     under cross-database 

training/testing. Although the proposed 

method is custom-tailored to detect splicing 

on images containing faces, there is no 

principal hindrance in applying it to other, 

problem-specific materials in the scene. 

The proposed method requires only  a 

minimum amount of human interaction and 

provides  a  crisp  statement  on  the 

authenticity of the image. Additionally, it is a 

significant  advancement  in  the  exploitation 

of illuminant color as a forensic cue. Prior 

color-based work either  assumes  complex 

user interaction or imposes very limiting 

assumptions.  Although   promising   as 

forensic evidence; methods that operate on 

illuminant color are inherently prone to 

estimation errors.  Thus,  we  expect  that 

further  improvements   can   be   achieved 

when more advanced illuminant color 

estimators become available. For instance, 

while we were developing this work, Bianco 

and         Schettini        [49]        proposed       a 

machine-learning based         illuminant 

estimator particularly for faces. An 

incorporation of this method is subject of 

future work. 

Reasonably effective skin detection 

methods have been presented in the  

computer vision literature in the past years. 

Incorporating such techniques can further 

expand the applicability of our method.  

Such an improvement could  be  employed, 

for instance, in detecting pornography 

compositions which, according to forensic 

practitioners, have become increasingly 

common nowadays. 
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