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Abstract—Recent advances in computing power and additive 
manufacturing (3D printing) have now made possible the efficient 
simulation, optimization, and replication of patient-specific 
procedures and prosthetics for neurosurgery applications. Two very 
promising applications are in finite element modeling for brain 
injury simulation and detection and applying additive 
manufacturing towards brain analogues or in vivo brain modeling. 
While these applications are very promising, the problem still 
remains of efficiently segmenting imaging data for use in finite 
element models or 3D printing. In this project, we put forth a novel 
algorithm for brain MRI image segmentation that combines 
statistically-based segmentation techniques with partial differential 
equation-based methods using neuromechanical models to provide 
an efficient algorithm for automated brain MRI segmentation. 
Findings from this project show that combining these segmentation 
techniques can efficiently segment brain MRI at a level of accuracy 
required for 3D printing applications. Specifically, we show here 
that combining nonlinear filtering, k-means clustering, and active 
contour modeling can produce robust segmentation of brain MRI 
images. We anticipate that these results will eventually lead to the 
ability to simulate brain procedures and prosthetics on a patient-
specific level by using the segmented images for finite element mesh 
generation or additive manufacturing processes. When used in 
conjunction with existing simulation and optimization techniques, 
image segmentation technology has many far-reaching applications 
in neurosurgery, and the results from this project have brought 
some of these applications closer into reach. 

I. INTRODUCTION AND MOTIVATION 

The advent of data-driven medicine and modern computing 

power has enabled patient-specific diagnosis and treatment based 

on medical imaging data. However, the primary bottleneck in 

this workflow remains the ability to efficiently segment medical 

imaging data for use in simulation, modeling, and statistical 

analysis. Manual image segmentation for a single CT or MRI 

scan is a laborious process, often requiring expensive, 

specialized software and many hours of work to segment a single 

image sequence. As an image processing problem, medical 

image segmentation also poses many significant challenges due 

to noisy data, low contrast images, and large variations between 

patients [1]. 

For applications in neurosurgery and neurology, advances in 

finite element modeling and additive manufacturing (3D 

printing) have made possible the accurate simulation and 

construction of patient-specific brain models and analogues [2]. 

However, generating finite element meshes or surface models for 

3D printing requires the effective segmentation of brain MRI 

images. Brain MRI images are particularly difficult to segment 

due to the low level of contrast between the brain tissue, 

surrounding tissue, and cerebrospinal fluid [1]. The goal of this 

project is to create an image processing algorithm that can 

effectively segment brain MRI data. We focus on segmenting for 

3D printing applications—specifically for created patient specific 

brain analogues—because this area remains less developed. 

II. RELATED WORK 

Several methods of image segmentation have been 

proposed, which can be roughly divided into statistical 

techniques and partial differential equation-based 

techniques. The most popular statistical technique is fuzzy 

c-means classification, since it can effectively segment the 

image into separate classes of signal [3]. Other statistical 

techniques are more advanced and computationally 

intensive, such as convolutional neural networks [5]. For 

partial differential equation methods, there are many 

models based on energy minimization and level set 

methods. One of the most effective partial differential 

equation-based techniques is active contour models, which 

fit a spline with minimal energy to the image contours 

(shown in Figure 1) [6, 7]. There are also many 

deterministic models of edge detection based on wavelet 

transform or other transform methods [8]. Wavelet-based 

methods work by taking the discrete wavelet transform of 

the image and combining these to find the edges in the 

image, while energy minimization methods treat the edge 

contour as a flexible plate and seek to minimize its energy 

[6, 8]. 
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The algorithm presented here employs a 

novel method of complementing iterated active contour 

segmentation with nonlinear filtering and then post

processing with statistical techniques to produce an 

improved final segmentation result. While [7] has shown 

that active contours in conjunction with wavelet

edge detection can be effective for image segmentation, 

little work has been done on active contours in co

with nonlinear filters. The algorithm is designed 

specifically for brain MRI segmentation, and exploits the 

geometric properties of the brain to improve the 

convergence properties. 

Fig. 1: Active contour models fit a spline with minimal contour

energy to the image. 

III. TECHNICAL APPROACH AND MATHEMATICAL 

FRAMEWORK 

A. Active Contour Model 

There currently exist two main neuromechanical models. The 

first is based on minimizing the distance between functionally

related neurons [9], and the other on mini

energy of cortical tissue [10]. The former hypothesis disagrees 

with dissection experiments, but is more in-line with the material 

properties of the brain. The latter model does not match material 

properties of the brain, but does agree well with dissection 

experiments. Using the latter model, from [10] we have cortical 

folding governed by: 

This differential equation gives the energy norm:

Active contour models seek to minimize the energy norm of 

the contour [6]. Since cortical folding will naturally also seek the 

locally minimal energy state, there is an inherent connection 

between active contours and cortical folding. Because 
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Fig. 1: Active contour models fit a spline with minimal contour 

TECHNICAL APPROACH AND MATHEMATICAL 

There currently exist two main neuromechanical models. The 

first is based on minimizing the distance between functionally-

related neurons [9], and the other on minimizing the folding 

energy of cortical tissue [10]. The former hypothesis disagrees 

line with the material 

properties of the brain. The latter model does not match material 

well with dissection 

experiments. Using the latter model, from [10] we have cortical 

 

This differential equation gives the energy norm: 

 

Active contour models seek to minimize the energy norm of 

the contour [6]. Since cortical folding will naturally also seek the 

locally minimal energy state, there is an inherent connection 

between active contours and cortical folding. Because 

parameterizing a contour becomes very computationally difficult 

due to possible topological changes in the contour as it evolves 

between iterations, we instead employ a level set approach from 

[6] and treat the contour as the zero level set of higher dimension 

functionφ: 

v(s) = {(x,y)|φ(t 

We can then evolve φ according to the Hamilton

equation: 

There are many choices for the force   

For this project, we used the model proposed by [11]:

wherec1, c2 are integral functions of 

and µ controls the stiffness of the contour. The nonlinear 

PDE can be discritized and solved iteratively to converge 

to a local minimum (i.e. ∂φ/∂t 

locally optimal active contour. 

contour model was chosen because it is not dependent on a 

large edge gradient. Due to the low contrast between gray 

matter and cerebrospinal fluid, the edges in brain MRI will 

have a low gradient, so an edge

brain MRI segmentation. 

B. Brain Geometry 

Because the brain is a three dimensional function, we 

can also treat each individual slice of the brain as a level set 

Γ(x,y) of a higher dimensional function 

Γ(x,y)i= {ψ(x,y,t)|t = h×i}, i∈ Z and 

brain MRI slices, and define conv

hull of the support of Γ(x,y). If Γ

cross sectional area), we take h = 1

we have: 

conv(suppΓ0) ⊆ conv(suppΓ±1) ⊆

This property (approximately) holds for all brain slices, 

so we can exploit this property for efficiently segmenting 

the brain. That is, if we manually segment 

propagate the convex hull of each successive slice to 

remove unwanted features outside supp

an accurate initial value for the active contour 

segmentation, which in turn accelerates the convergence.
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There are many choices for the force F. One of the simplest is:

! 

For this project, we used the model proposed by [11]: 

 

are integral functions of φ, λ1 = λ2 = 1, ν = 0, 

controls the stiffness of the contour. The nonlinear 

PDE can be discritized and solved iteratively to converge 

∂t = 0), which will be the 

locally optimal active contour. This particular active 

contour model was chosen because it is not dependent on a 

large edge gradient. Due to the low contrast between gray 

matter and cerebrospinal fluid, the edges in brain MRI will 

have a low gradient, so an edge-free model is ideal for 

Because the brain is a three dimensional function, we 

can also treat each individual slice of the brain as a level set 

of a higher dimensional function ψ(x,y,t). Take 

Z and h ≡ step size between 

brain MRI slices, and define conv(suppΓ(x,y)) ≡ convex 

Γ0 ≡ largest MRI slice (by 

= 1, and there are n slices, 

⊆ · · ·  ⊆ conv(suppΓ±n) 

This property (approximately) holds for all brain slices, 

so we can exploit this property for efficiently segmenting 

the brain. That is, if we manually segment Γ0, we can 

propagate the convex hull of each successive slice to 

e suppΓias well as provide 

an accurate initial value for the active contour 

segmentation, which in turn accelerates the convergence. 
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C. Image Segmentation Algorithm 

The proposed algorithm uses the active contour model 

proposed by [11]. In this algorithm, we combine gamma 

filtering with iterated active contour segmentation to 

improve the final segmentation result. Additionally, the 

algorithm employs statistical techniques to further remove 

unwanted background features and morphological post-

processing to improve the 3D printing properties. The goal 

is to create a robust brain MRI segmentation system by 

combining these techniques. The algorithm is given below. 

 

Manually segment thickest slice and initialize as Γ0 

for All slices above and below Γ0 do 

Segment Snby Sn
0 
= Sn∗conv(suppΓn−1) 

Gamma filter: conv(suppΓn−1))
2.0

 

Initialize φ0 = conv(suppΓn−1) while 

active contour not converged do 

Propagate active contour on image 

end while 

Sn
0 
= (Sn∗conv(suppΓn−1))

1.5
 

Initialize 

Repeat active contour iteration 

Perform k-means clustering with k = 4 

Record minimum centroid end for kavg= average 

lowest centroid of k-means data Threshold each 

slice by kavg 

Morphological post processing on segmented slices 

IV. EXPERIMENTAL RESULTS 

A. Algorithm and Evaluation of System Parameters 

After manually segmenting the initial slice, first step in 

segmenting an intermediate slice is to load the MRI image from 

the image sequence. The MRI sequence contains 120 images, 

and the voxel size was 1mm
3
. 

 

Original slice image 

We can roughly segment the raw MRI image using the convex 

hull of the mask from the previous slice. Because the support of 

each successive slice is a subset of the previous slice, we can use 

this property to efficiently remove the skull from the image. 

 

The active contour segmentation occurs in two steps. First, we 

apply a gamma filter with γ large to make the white matter 

dominant in the image. Then, we use the active contour 

algorithm from [11] (using the implementation in [12]) to 

segment the image using the gamma filter. The purpose of this 

step is to segment primarily the white matter, so the final contour 

will converge to a contour which does not contain the dura mater 

or other unwanted material. We found experimentally that γ = 2.0 

produced good results for this step, however any γ value that 

sufficiently suppresses the dura mater and gray matter would be 

valid. Christo Ananth et al. [4] proposed a system in which an 

automatic anatomy segmentation method is proposed which 

effectively combines the Active Appearance Model, Live Wire 

and Graph Cut (ALG) ideas to exploit their complementary 

strengths. It consists of three main parts: model building, 

initialization, and delineation. For the initialization (recognition) 

part, a pseudo strategy is employed and the organs are segmented 

slice by slice via the OAAM (Oriented Active Appearance 

method). The purpose of initialization is to provide rough object 

localization and shape constraints for a latter GC method, which 

will produce refined delineation. It is better to have a fast and 

Initial Mask Initial Segmentation 
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robust method than a slow and more accurate 

technique for initialization. 

 

 

For the second active contour segmentation, we apply a 

gamma filter with a more moderate value (γ = 1.5 in this 

case), then segment with the same active contour 

algorithm, using the contour found in the previous step as 

the initial guess. The active contour converges to a locally 

minimal energy value, so the purpose of the first active 

contour segmentation is to find an initial guess for the 

second segmentation that will converge to the correct 

contour. Were we to use the convex hull of the previous 

slice as the initial guess, unwanted features such as the dura 

mater would be included in the final segmentation, and 

features such as separation between brain folds would be 

lost. For this step, we use a more flexible active contour 

than in the previous step i.e. do not penalize curvature as 

strongly in the contour optimization. From a 

neuromechanical standpoint, a more flexible contour when 

segmenting the gray matter is justified due to the lower 

stiffness of gray matter relative to white matter and 

prevalent folds in the brain structure. 

 

After segmenting each slice, we perform k-means 

clustering on the histogram of the image using k = 4. For 

each slice, the lowest centroid was recorded. The minimum 

centroids were then averaged to find an average value for 

the background throughout the entire image sequence. 

Using this average value, the segmented slices were 

thresholded to produce to the final binary mask. 

 

Histogram after segmentation, with k-means centroids 

 

Final segmented image 

For 3D printing applications, we do post-processing on the 

segmented masks to remove artifacts from the thresholding. 

Specifically, we erode then dilate the mask. Very small or thin 

regions are usually artifacts and can potentially cause issues 

when replicating the brain sample via 3D printing since they are 

usually below the accuracy threshold of most commercially 

available printers. 

Gamma Filter 2 ( γ =1 . 5 ) Active Contour Segmentation 2 

Gamma Filter 1 ( γ =2 . 0 ) Active Contour Segmentation 1 
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B. Comparison to Other Approaches 

Compared to manual segmentation, the given algorithm 

is significantly faster. Manual segmentation takes about 1-2 

days of work on average, whereas this algorithm 

segmented the test sequence in 519 sec. (after manual 

segmentation of the initialization slice). The presented 

algorithm is very promising since its runtime is fast enough 

to be effective for clinical applications. The given 

segmentation algorithm also outperformed several existing 

image processing techniques. For example, figure 2 shows 

that the segmentation performance is worse with simple 

adaptive thresholding. 

 
presented in this project. Otsu’s algorithm. 

Fig. 2: Comparison of presented algorithm with adaptive 

thresholding. 

Additionally, using an edge-dependent active contour 

model (i.e. a model which includes a stopping function in 

the Hamiltonian) does not perform as well as the given 

algorithm. As shown by figure 3, the given algorithm is 

much more effective at preserving the structure of the brain 

slice and removing artifacts and spurious regions from 

thresholding. Edge-based active contour models work well 

where there are sharply delineated edges in an image. 

However, since the attenuation coefficient for 

cerebrospinal fluid, white matter, and gray matter are 

similar, there brain MRI does not have clearly delineated 

edges, so an edge-based active contour will perform 

poorly. 

 
developed in this project. dependent active contour. 

Fig. 3: Comparison between presented algorithm and similar 

algorithm with edge-dependent active contour. 

 

Fig. 4: Plot showing 1-norm of error with respect to distance 

from reference slice. Plot shows that forward propagation error 

grows very little, while backward propagation error grows 

significantly.

 

Fig. 5: Surface model generated via marching cubes method [13] 

using images segmented with the presented algorithm. 

Image segmented with algorithm Image segmented with edge- 

Image segmented with algorithm Plain adaptive thresholding via 

Mask before post-processing Mask after post-processing 
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V. DISCUSSION 

The process images show that the algorithm is able to 

successfully segment brain MRI images. The gamma filtering 

also significantly increased the performance of the active contour 

algorithm. This can be attributed to the nonlinearity of the 

gamma filter increasing the gradient of the edges, which 

 

Fig. 6: Model printed via fused deposition modeling (FDM). 

in turn aided the convergence of the active contour. Using 

kmeans clustering to find a suitable threshold for binarizing 

the image in the final step also yielded physically accurate 

results. 

To quantitatively measure the error from segmentation, 

we first manually segmented and binarized a subset of the 

original brain MRI images. To evaluate the error, we used 

the 1-norm of the difference between the two images to 

measure the number of pixels that differed between the 

manual and automated segmentation. That is, Error = 

||IManual−IAutomated||1, where I represents the vectorized image. 

Figure 4 shows the results of the error analysis. Here, we 

define ”forward propagation” as segmenting slices that 

come after the reference slice in the MRI image sequence, 

and ”backward propagation” as segmenting slices before 

the reference slice. The error plot shows that the errors 

remain relatively small for the forward propagation. This is 

most likely due to the well-behaved geometry of the slices 

segmented in the forward propagation. The error for the 

backwards propagation was much larger, which we 

attribute to two factors. First, our assumption of the brain 

region being compactly supported breaks down in the last 

slices containing the relevant brain structure e.g. in the 

slices containing only the temporal lobes. Secondly, in 

these lower slices, there are many different kinds of tissue 

we do not wish to segment, such as the eyes and 

cerebellum. These tissues were removed during the manual 

segmentation, but our geometric model for the brain would 

not have removed these during the initial segmentation, 

causing significant errors in the final segmentation result. 

For 3D printing applications, we were able to 

successfully render the segmented slices into a surface 

model (Figure 5) using the marching cubes method and 

then convert this to an STL file using [13]. The surface 

model was then printed using fused deposition modeling 

(FDM) (Figure 6). The printing results show that the 

morphological post-processing (edge smoothing and small 

region removal) improved the quality of the surface model 

and reduced structural errors while printing. While there 

are some regions of the model where details are lost, these 

regions are minimal and the 3D printed model is accurate 

enough to be used for brain analogue modeling. 

VI. CONCLUSIONS AND FUTURE WORK 

This project developed an algorithm that combined nonlinear 

filtering, active contour modeling, statistical thresholding, and 

morphological post-processing into a novel algorithm that can 

robustly segment brain MRI images. The runtime of the 

presented algorithm is significantly faster than manual 

segmentation and other existing semi-automated segmentation 

workflows, and the algorithm was still very effective at 

extracting the relevant brain tissue from the MRI images. The 

algorithm was less effective at removing the eyes, cerebellum, 

and dura mater, but these issues can be easily overcome in the 

future with improvements in preprocessing the image. Future 

work for this should focus on employing more advanced 

statistical techniques in the image segmentation algorithm. Two 

particular areas of interest are using more advanced computer 

vision techniques to identify and remove non-brain tissues in the 

lower brain slices, and use statistical learning techniques to more 

accurately predict the geometric evolution of the brain between 

slices according to the Hamilton-Jacobi equation. Overall, 

nonlinear filtering significantly improves the performance of 

active contour models in environments with weak edges, and 

combining statistical and morphological techniques with 

nonlinear filters and active contours can very efficiently segment 

brain MRI images at a level of accuracy suitable for neurosugery 

and 3D printing applications. 
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