
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

74

All Rights Reserved © 2016 IJARTET

AHB BUS PROTOCOL BASED SOC

ARCHITECTURE

1
Ms.JANANIPRIYA.G, 2Ms.

POORANI.P M.E

1
UG Scholar, Department of ECE ,

2
Assistant Professor, Department of ECE

1,2
 Arulmigu Meenakshi Amman College of Engineering, Vadamavandal.

1
jananipriyaganesh@gmail.com,

2
poorani_1oct@yahoo.in

ABSTRACT- Communications systems are

increasingly reliant on system on chip (SOC). As the

complexity and size of SOCs continues to grow, the risk of

hardware based “Trojan" attacks also increases. Trojan

attacks in integrated circuit (IC) may alter system function

during the design or manufacturing process. Normally,

more effort has been given to software security and little

attention has been given to hardware security even less

attention to how to detect and respond to run time Trojan

attacks. We propose Trojan-resistant AMBA bus

architecture suitable across a wide range of System on Chip

(SOC) systems that can minimize performance degradation

and maximize seamless system operation despite the

function replacement. This approach is highly feasible in

that it is not required to specially manage system software

and other normal system hardware functions for the

replacement.

Index Terms-Hardware Trojan horses, dynamic function

replacement, system-on-chip, advanced microcontroller bus

architecture bus arbitration.

I.INTRODUCTION

 Design outsourcing has become increasingly

common over the past 15 years for ICs generally and in

particular for SOCs. The incorporation of third party IP

designs represents an important potential point of

vulnerability. Outsourced designs are typically provided

using register transfer level (RTL) descriptions or hard

macro cell designs with the result that there is no trusted

golden model to use for comparison. In addition

simulation models delivered along with third party IPs

can themselves be untrustworthy and could be designed

to block the modeling of the impact of an activation

trigger. In such an environment, a trustworthy system-

level model may be difficult or impossible to obtain.

Most fundamentally, a true Trojan would involve an

attack designed to remain hidden and inactive until

triggered either internally or externally and would be

extremely difficult to detect during verification. In this

regard, outsourced designs need protection against

Trojan attacks.

 The terms hardware Trojan horse and hardware

Trojan are used to describe malicious hardware within an

IC or hardware system that is designed to escape

detection during verification and to then launch an attack

post-deployment. Despite the enormous amounts of

effort that has been devoted to software security,

relatively little attention has been directed to hardware

security in general and even less to the issue of how to

detect and respond to run-time Trojan attacks. The run-

time handling of Trojan attacks can be partitioned into

the two overall tasks of 1) detection and 2) response. The

first task involves identifying the presence of a Trojan

attack and its source. In some cases, such as when an

attack shuts down the system functionality, the presence

of an attack may be relatively easy to determine. Other

attacks such as those involving a Trojan that works in the

background to exfiltrate data to an off-chip location may

be more difficult to identify. The second task and in

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

75

All Rights Reserved © 2016 IJARTET

particular on measures allowing the IC to continue

operation despite the presence of a Trojan corrupting one

of the functional blocks within the chip. More

specifically, consider the use of embedded

reconfigurable logic or external reconfigurable logic

devices to replace system functionalities that are

compromised by a Trojan. While not all potential attacks

can be resolved in this manner, there is a significant

subset of attacks that can indeed be significantly

mitigated.

II.PREVIOUS WORK

The previous work relevant to the current paper

lies in two broad areas: In the first category, there have

been a number of publications that address methods to

detect maliciously altered hardware pre-deployment. In

[6], the authors have developed a scalable hardware

Trojan detection and diagnosis method. The approach

uses circuit segmentation and gate-level characterization

to detect and diagnose hardware Trojan horses even in

large circuits. Tehranipoor and Koushanfar presented a

classification of hardware Trojans and a survey and

analysis of published techniques for Trojan detection in

[7]. They also described recently proposed techniques

used in designing for hardware trust. In [8] and [9],

authors described a set of anti-Trojan design methods

and countermeasures that can increase IC security by

making it possible to identify and quarantine a functional

block found to contain a Trojan. Embedded

reconfigurable logic has been used to implement

function designs which may be updated in post

deployment, unexpectedly added to systems after IC

fabrication or temporarily used to perform IC testing

before deployment. Conventional SOC bus structure is

used in [11]. Christo Ananth et al. [2] proposed a system,

this paper presents an effective field programmable gate

array (FPGA)-based hardware implementation of a

parallel key searching system for the brute-force attack

on RC4 encryption. The design employs several novel

key scheduling techniques to minimize the total number

of cycles for each key search and uses on-chip memories

of the FPGA to maximize the number of key searching

units per chip. Based on the design, a total of 176 RC4

key searching units can be implemented in a single

Xilinx XC2VP20-5 FPGA chip. Operating at a 47-MHz

clock rate, the design can achieve a key searching speed

of 1.07 x 107 keys per second. Breaking a 40-bit RC4

encryption only requires around 28.5 h.

The Proposed architectural features of System-on-Chip

can minimize performance degradation and enables

seamless system operation.

III.DFR SEQUENCE AND SEAMLESS SYSTEM

OPERATION
 The on-the-fly replacement of a function creates

some critical obstacles to seamless system operation.

During the configuration, a bus master may attempt to

access the function being configured because other

system functions are not aware of the replacement

activity. This obstacle is addressed by taking advantage

of delayed response capabilities that are supported in

most bus protocols (e.g., the HREADY signal in AHB

bus specification). When a slave cannot serve a request

immediately, the slave postpones the activation of the

acknowledge signal and the accessing master needs to

wait for the slave’s response until the acknowledge

signal is activated by the slave. Similarly, the DFR

controller can delay any access of bus masters going to

the replacing function during the replacement processes.

This method allows other system functions to locally

operate even during the configuration. The drawback of

this method is that the delayed response locks bus

operation and results in temporary halt of bus operation.

Fig 1 AHB Based Connection among Bus Arbiter,

Master and Slave for Bus Split Operation

 An proposed architectural method uses the bus

split which is used to address the stopped bus

transaction. This method allows the reconfigurable logic

module to nullify the access on it so that other bus

masters can utilize the system bus during the

replacement. Fig.1 shows an AHB-based connection

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

76

All Rights Reserved © 2016 IJARTET

among a bus arbiter, master, and slave modules for the

bus split operation.

 An example of a bus split occurrence is as follows.

First, a bus master asserts the HBUSREQ signal to

request bus master ship. Based on the arbitration process

of the arbiter, the HGRANT signal is activated to

properly grant the request for the bus master ship. Then

the bus master sends address, data and control signals to

a slave through the bus. When the slave module cannot

serve the master’s access sufficiently, the slave module

can assert SPLIT in the HRESP signal and activate a bit

representing the current master module in the HSPLIT

signal. After the split request from the slave, the master

nullifies its access to the slave and waits for the next bus

master ship grant. The arbiter deactivates the HGRANT

connected to the master and performs the arbitration

process excluding the master which accessed the salve.

Note that the master is not considered in the arbitration

process of the arbiter until the slave deactivates the

HSPLIT. When the slave module is ready to serve the

master’s access, it deactivates the HSPLIT and the

arbiter now includes the pending master into its

arbitration process. When the arbiter grants the bus

master ship to the pending master, the master can resume

its task by accessing the slave.

 Likewise the function replacement can utilize the

bus split to properly delay system accesses on the

replacing function and allow other masters to use the

system bus during the replacement time. The method is

based on a modified SOC architecture including an

embedded reconfigurable logic or an auxiliary FPGA

used for function regeneration, bus architectures for

isolating malicious hardware module and system

performance maintenance, as well as hardware modules

to manage reconfiguration and reliable interface

signaling. This approach provides not only a way of

regenerating compromised on-chip function, but does so

in a manner that enables seamless system operation

during replacement and minimizes performance

degradation.In sum, the combination of delaying the

response of the replacement function, splitting bus

transaction and updating register setting values in the

DFR controller provides four advantages in the seamless

system operation.

1) In spite of the unexpected function replacement, the

method maintains system operation context.

2) It limits the region of operation halt to the function of

a module which is being replaced and allows other

functions to continue their operations even during the

unexpected replacement activity.

3) It eliminates the potential for false responses from the

slave during the configuration.

4) It minimizes system performance degradation

potentially caused by the replacement.

IV.SOC BUS STRUCTURE AND OPERATION

System-on-a-chip (SOC) technology is the

packaging of all the necessary electronic circuits and

parts for a system on a single integrated circuit (IC),

generally known as a microchip. A SOC consists of

multiple heterogeneous functional blocks. To enable data

flow among these blocks, a SOC bus is used to

interconnect one or more processing cores to each other

and to the surrounding interface logic. This approach

makes it possible to create functional blocks that are

specialized for and therefore highly efficient at

computation for specific tasks. Traditional SOCs are

designed under the assumption that both the functional

blocks themselves and the bus management logic are free

from intentionally-inserted malicious circuitry. However,

as SOC complexities increases, the number of

vulnerabilities also increases as well. In this

environment, it is no longer possible to assume that a

chip is always free of corrupted circuitry. Instead it is

more practical to design chips with the understanding

that one or more blocks may prove to be corrupted and

that on-the-fly identification and replacement of such

blocks can be critical for the operation of the systems in

which such SOCs reside. Thus in the present work, we

uses SOC based AMBA bus to enable such replacement

in the background of common bus architectures.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

77

All Rights Reserved © 2016 IJARTET

 Fig 2 AMBA Hierarchical Bus Architecture

A.AMBA AHB BUS

 Buses are shared communication media used by

devices to “talk to” each other both on-chip and off-chip.

The communication actions which take place can carry

both data and control structures. On chip communication

standard called Advanced Microcontroller Bus

Architecture (AMBA). The basic AMBA bus

architecture is shown in fig1. AMBA specification

defines three distinct bus architectures. Advanced high-

performance bus (AHB) and advanced-system bus (ASB)

are both for high clock frequency module. But ASB is

hardly used in peripheral module in popular SOC system

recently. The last bus architecture is advanced peripheral

bus (APB), which is mainly used for low-power

peripheral modules.

 AHB is a bus protocol introduced in Advanced

Microcontroller Bus Architecture version 2 published by

ARM Ltd company. Its main features are burst transfer,

split transactions, multiple masters, wider address bus,

larger data paths and pipelined operation. AHB bus is a

multi-master with arbitration, putting the address on the

bus, followed by the data. It also supports wait-state

insertion and has a data-valid signal (HREADY). This

bus differs in that it has separate read (HRDATA) and

write (HWDATA) buses. These bus connections are

multiplexed rather than making use of a tristate multiple

connections.

 All bus operations are initiated by bus masters,

which also can serve as a slave. The master-generated

address is decoded by a central address decoder that

provides a select signal to the addressed bus slave unit.

The bus master can "lock" the bus, reserving it with the

central arbiter for a series of locked transfers. The slave

unit has the option to terminate a transaction as an error,

signals the master to retry, or split the transaction for

later completion. Split transactions enable the slave to

defer the operation until it's able to accomplish it thereby

releasing the bus for other accesses. The slave signals a

split transaction and saves the master number

(HMASTER). When ready to complete the transaction,

the slave signals the arbiter with the master number.

When the arbiter grants bus access to the master, it

restarts the transaction. No master can have more than 1

pending split transaction. It is a synchronous bus that

supports bursts and pipelining of accesses to improve

throughput. The AHB system bus and APB peripheral

bus are linked through a 'bridge' that acts as the master to

the peripheral bus slave devices.

 AHB supports multiple masters (either through a

central arbiter, or through slave level arbiters in the case

of a multi-layer AHB-Lite system). The arbiter has the

task of determining which master gets to do an access.

Fig 3 Bus Arbiter with three masters

B.AMBA BUS ARBITRATION

 The simple bus arbiter with three master are

shown in fig 3. The AHB Arbiter is used in AHB multi-

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

78

All Rights Reserved © 2016 IJARTET

master systems to arbitrate the access to the AHB bus.

The AHB Arbiter is basically a “traffic controller” which

allows the AHB bus to be shared between multiple bus

masters such as processors, DMA controllers, and

peripheral core master interfaces. The AHB Arbiter uses

a round robin priority scheme with Master0 having the

default priority. This priority scheme assures that each

master equally has its turn at acquiring and completing

an AHB bus transaction. Each inactive master is locked

out (HLOCK) while the active master has access to the

bus to prevent contention. The AHB Arbiter steers all the

AHB HWDATA, HADDR, HTRANS, HWRITE,

HSIZE and HBURST signaling from each master to the

AHB system bus.

 Every transfer has an address/control phase and a

separate data phase. They're both pipelined (able to start

the next transfer's arbitration and address phase while

finishing the current transfer).The address transfer is

always followed by the data phase. A slave (memory or

peripheral device which accepts a read or write request

from a master) can prolong the transfer (add wait states)

using the HREADY signal. Separate unidirectional buses

for read (HRDATA) and write (HWDATA) are used.

AHB supports bursts which can either be of undefined-

length or fixed length (4, 8 or 16 beats). Bursts may be

performed to a fixed address (e.g. for FIFO access),

increment addresses (in steps of a single increment equal

to the size of the access) or wrap (where a critical word

within a cache line is accessed first). The address from a

master is decoded by a central address decoder that

provides a select signal to one of the slaves.

Fig 4 AMBA SOC Bus Interconnections, Showing

Master and Slave Devices, an Arbiter, an Address

Decoder and Various Multiplexers

Slaves may respond to accesses by the master

by signaling OK, or by reporting an error. In the full

AHB system (but not AHB-Lite), slaves may also give a

retry response, or the less commonly used split response.

Split transactions let the slave to delay completion of the

access until ready but to free the bus for other accesses

by a different master. The slave records the number of

the master and signals the arbiter when the split transfer

can complete. When the arbiter re-grants the bus to that

master, it restarts the transaction. A master can have only

one pending split transaction.

V.EXPERIMENTAL RESULTS

 Using Modelsim software, verilog code for

master, slave and arbiter are synthesized and simulated

using altera quartus tool. The experimental result for

reading and writing the data from master to slave has

been shown. Figure 5 and figure 6 shows the simulation

result of master and slave devices. Initially the global

signals (clock and reset signals) are enabled. Based on

burst signal and transfer signal from granted master, 32

bit data’s are written from master to selected slave. After

the master device has started the transfer, the slave

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

79

All Rights Reserved © 2016 IJARTET

device then determines how the transfer should progress.

The slave device receives HSEL signal which comes

from decoder to recognize it is chosen or not. Whenever

a slave device is chosen, it must provide the response

which indicates the status of the transfer like complete or

error. When HREADY which comes from the selected

slave is equal to HIGH, it indicates that the transfer has

finished on the bus. Otherwise, it means the transfer

should be extended or the ERROR, RETRY and SPLIT

may happen. HRESP signal which comes from the

selected slave to granted master, it indicates that the

transfer may be OKAY, ERROR, RETRY or SPLIT.

Similarly, data’s from slave transferred to master based

on the control signals.

Fig 5 Master Output

 Figure 7 shows the simulation result of arbiter.

The arbiter determines which master devices has its

address and control signals sending to all of slave

devices. A central decoder is required to control the read

data and response signal from multiplexer which selects

appropriate signal from the slave involved in the transfer.

Based on HBUSREQx signal (from master to arbiter),

arbiter will determine requested (granted) master.

Fig 6 Slave Output

Fig 7 Arbiter Output

Using Altera Quartus tool, we can analysis the area,

power and frequency for master, slave and arbiter shown

in fig 8.

Fig 8 Analysis of Some Parameters

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 19, April 2016

80

All Rights Reserved © 2016 IJARTET

VI.CONCLUSION

 We proposed SOC architecture with AHB

protocol that is resistant to hardware based Trojan

attacks. We implement a 32 bit data transfer in SOC

with high speed and highly reliable. SOC architecture

enables seamless system operation during

replacement and minimizes performance degradation.

AHB protocol designed with reduced area, power and

time, so the cost to protect the system against Trojan

was found to be low.

 REFERENCES

[1] R. Saleh, S.Wilton, S.Mirabbasi,A.Hu, M. Greenstreet,

G. Lemieux,P. Pande, C. Grecu, and A. Ivanov, “System-

on-chip: Reuse and integration,”inProc. IEEE, Jun. 2010,

vol. 94, no. 6, pp. 1050–1069.

[2] Christo Ananth, Muthamil Jothi.M, M.Priya,

V.Manjula, “Parallel RC4 Key Searching System Based on

FPGA”, International Journal of Advanced Research in

Management, Architecture, Technology and Engineering

(IJARMATE), Volume 2, Special Issue 13, March 2016,

pp: 5-12

[3] Y. Jin and Y. Makris, “Hardware Trojan detection using

path delay fingerprint,” in Proc. IEEE Int. Workshop

Hardware-Oriented Security Trust (HOST’08), 2008, pp.

51–57.

[4] J. Aarestad, D. Acharyya, R. M. Rad, and J. Plusquellic,

“Detecting Trojans though leakage current analysis using

multiple supply padIDDQ,” IEEE Trans. Inf. Forensics

Security, vol. 5, no. 4, pp. 893–904,Dec. 2010.

 [5] L. Jianwen and J. Chuen, “A System-on-Chip

dynamically reconfigurable FPGA platform for matrix

inversion,” in Proc. IEEE Int. Sym.Integr. Circuits, 2007,

pp. 465–468.[27] D. Flynn, “AMBA: enabling reusable on-

chip designs,” IEEE Micro,vol. 17, no. 4, pp. 20–27, 1997.

 [6] H. Salmani,M. Tehranipoor, and J. Plusquellic, “A

Novel technique for improving hardware Trojan detection

and reducing Trojan activation time,” IEEE Trans. Very

Large Scale Integration (VLSI) Syst., vol. 20,no. 1, pp.

112–125, Jan. 2012.

[7] M. Tehranipoor and F. Koushanfar, “A survey of

hardware Trojan taxonomy and detection,” IEEE Design

Test Comput., vol. 27, no. 1, pp.10–25, 2009.

[8] L. Kim and J. Villasenor, “A system-on-chip bus

architecture for thwarting integrated circuit Trojan horses,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,

no. 10, pp. 1921–1926, Oct. 2011.

[9] L. Kim, J. Villasenor, and C. Koc, “A Trojan-resistant

system-on-chip bus architecture,” in Proc. IEEE MILCOM.

Conf., Boston, MA, Oct.2009, pp. 1–6.

[10] “ARM, AMBA specification (rev 2.0),” 1999

[Online]. Available:

http://www.arm.com/products/solutions/AMBA_Spec.html

[11]Lok Won Kim, and John D.Villasenor, “Dynamic

Function Replacement for System-on-Chip Security in the

Presence of Hardware- Based attacks” in IEEE transactions

on reliability,vol.63,no.2,june2014,

 pp. 661-675.

