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Abstract — The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality ECG signals are
utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real
situations, ECG recordings are often corrupted by artifacts. Two dominant artifacts present in ECG recordings are: (1) high-
frequency noise caused by electromyogram (EMG) induced noise, power line intervention, or mechanical forces acting on
the electrodes; (2) baseline wander (BW) that may be due to respiration or the motion of the patients or the instruments.
These artifacts severely limit the utility of recorded ECGs and thus need to be removed for better clinical evaluation.
Several methods have been developed for ECG enhancement. This paper presents de-noising of three major ECG
disturbances i.e. Power Line Interference, Wide Band Stochastic noise (EMG noise) and Base Line Wander noise. De-
noising is performed using various wavelet Transform techniques applying different types of threshold functions.
Performance is measured using SNR and MSE and optimized combinations of Wavelet with a Threshold functions for
different noises. The analysis is also done on real ECG signals obtained from medical database.

Keywords: Electro Cardiogram (ECG), Power Line interference, Electromyography (EMG) noise, Base line wander noise,
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I.  INTRODUCTION

Human heart activity is described electrically by
ElectroCardiographic signal, which is decomposed in
characteristic components namely P, Q, R, S and waves. The
rare cardiac events, anomalies like arrhythmias can be
detected and monitored using ECG. The major concern of
biomedical signal processing is need for reliable techniques to
exclude the major distortions like noise contamination,
artifacts and interference from other signals.
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Fig 1: Schematic of ECG Signal

The rare cardiac events, anomalies like arrhythmias can be
detected, predicted and monitored using ECG. The major
concern of biomedical signal processing is need for reliable
techniques to exclude the major distortions like noise
contamination, artifacts and interference from other signals.

The non-stationary behavior of ECG signal gives a
tough challenge to denoise it. There are many approaches in
the literature developed so far for the task of denoising. There
are a no of approaches in ECG denoising like Linear Filters,
Adaptive Filters and Kalman Filters, but all of them have their
own limitations. The limitations include poor SNR, MSE and
complexity.

Research results proved that WTs can be an effective
tool in handling the non-stationary nature of signals. Donoho
et al combined wavelet de noising and threshold estimations
which laid a path to use the technique in ECG de-noising.
Many hybrid algorithms came up combining Wavelet with
different other techniques giving out proven results.

In this paper by combining Wavelet filtering with
Threshold, some of the wavelet coefficients are removed,
hence smoothing out the signal. Donoho’s method has been
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the inspiration for de noising and works well for a wide class
of one-dimensional and two-dimensional signals. The noise
content of the signal is reduced, effectively, under the non-
stationary environment.

In this paper a wide variety combinations of
Wavelets and Thresholds are deployed and the appreciable
combinations for a particular noise are suggested. The most
disturbing noises for ECG like Power Line Interference, EMG
noise and Base line drift are removed using the techniques.
The process of de-noising include, applying Wavelet
Transform to the signal, shrinking the coefficients using
various thresholds and finally taking the inverse wavelet
transform. SNR and MSE will be the performance evaluators.
In the further sections, this paper discusses about Discrete
Wavelet Transforms, Threshold techniques, Implementation
and the results obtained.

Il. WAVELET TRANSFORMS

A wavelet is a small wave whose energy is
concentrated in time, which is useful for the analysis of
transient, non-stationary or time-varying phenomena. Such a
wave can be expressed and analyzed as a linear
decomposition of the sums and products of the coefficient and
function.

For Example, any signal x(n) decomposition can be
done by simultaneously passing it through a series of high
and low pass filters with impulse responses as h(n) and g(n)
respectively. The outputs of high and low pass filters are
named as detailed and approximate coefficients respectively.
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Fig. 2. Wavelet Decompostion
In the decomposition process, the down-sampling by
2 divides the input frequency by 2, thus doubling the
frequency resolution further making the time resolution half.
Increasing the levels of decomposition, which is user defined
and application specific, will increase the frequency
resolution further. Typically 3 to 5 levels are cascaded.
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In the wavelet transform, the original signal (1-D, 2-D, 3-D)
is transformed using predefined wavelets. The wavelets are
orthogonal, orthonormal, or biorthogonal, scalar or
multiwavelets. In discrete case, the wavelet transform is
modified to a filter bank tree using the Decomposition/
reconstruction given in Fig.2.
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Fig. 3 DWT and IDWT

The wavelet transform de-noising is based on the
statement that most energy of a signal is concentrated in few
coefficients whereas noise is spread over a large number of
coefficients. The shrinkage step involves implementing a
nonlinear threshold over these coefficients to retain the larger
magnitude (signal) coefficients and nullifying the smaller
magnitudes (noise).

1. THRESHOLD ESTIMATION

Thresholds are usually applied only on the detailed
coefficients as approximation coefficients contain low
frequency components which are least affected by noise. The
magnitude of coefficients is compared to a threshold level,
denoted by ‘4’ and an optimized value of A is estimated. To
estimate the threshold 4, we need to calculate the noise level
6. Among many methods for estimating value of ¢, a popular
one proposed by Donoho and Jhonstone is based on the detail
coefficients of the last level calculated with the help of
median absolute deviation (MAD) as per the following
formulae:

g =(x—x'))/0.6745 (1)

Where, 0.6745 is the scaling factor for a normally distributed
data. Further, to estimate the threshold level ‘A’ a universal
threshold was used which is a function of noise level ‘¢’ and
length of signal ' k', given as:

1=02 log(k) (2)

This shrinkage step is also referred as wavelet thresholding.
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The thresholds implemented in this paper are Rigrsure,
Heursure, Sqtwolog and Minimaxi under the cases of both
soft and hard thresholding. Each and every threshold in their
own case of hard and soft have their own set of advantages
for a particular noise when used with a particular combination
of wavelet. The various combinations of Thresholds with
wavelets are performed and tabulated in the results.

A. Sqtwolog Threshold: This is also known as fixed

threshold or global thresholding method and it is

calculated as:

A =02 log (k) (3)
Where ‘A’ is the threshold level, ‘¢’ is the noise
level and ‘k’ is the length of the signal.

B. Rigrsure Threshold: Steins unbiased risk estimator
(SURE) or rigrsure is an adaptive thresholding method
which is proposed by Donoho and Jonstone .

C. Heursure Threshold: Heursure threshold is a
combination of SURE and global thresholding method. If
the signal-to noise ratio of the signal is very small, then
the SURE method estimation will account for more
noises. In this kind of situation, the fixed form threshold
is selected by means of global thresholding method.

D. Minimaxi Minimax: Threshold is also used fixed
threshold and it yields minmax performance for Mean
Square Error (MSE) against an ideal procedures.

E. Hard Thresholding
SA(d)=d. (abs(d) > 2)
E. Soft Thresholding
S (d) = {(a)(|d| — A); |d| = A0; |d| < A
1VV. Methodology

An experimental setup is made and a broad comparison of
various denoising techniques for variety combinations of
wavelets and thresholds is made for each type of noise in
ECG signal (viz. baseline drift noise, EMG noise and
Powerline interference noise). The experimental setup is as
follows.
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Fig. 4 Experimental Setup
A. Removal of EMG/wideband stochastic noise
The whole process can be summarized in the following steps:-
Stepl: Decomposition of the noisy ECG signal is done into
the wavelet coefficients using the wavelet decomposition tree.
Any of the wavelet can be chosen from the wavelet family for
this purpose.

Step 2: From the obtained wavelet coefficients the noise
variance is estimated and thus threshold level A is estimated
using the universal threshold formulae as discussed earlier.

Step 3: Then the different thresholding schemes are
implemented and finally modified coefficients are
reconstructed using the IDWT.
B. Removal of Baseline Drift

Among the many proposed algorithms for removal
of baseline drift noise, in this paper the adopted algorithm is
based on wavelet approach for baseline wander suppression.
This noise constitutes a frequency band of 0-0.5 Hz and thus
for the purpose of denoising following steps are performed:-

Stepl: Signal is decomposed in a way that the final level of
the approximation coefficients represents a frequency band of
0-0.5 Hz.

Step2: The noise variance is then estimated from this very
level of the decomposed coefficients. For a 1 KHz signal, at a
scale of 28, the approximation coefficient represents a
frequency band of 0-0.5 Hz.

Step3: These coefficients are modified in accordance with the
thresholding scheme.

C. Removal of Power Line Interference The power-line
signal is a narrow-band signal. For removing the PLI, whole
process can be summarized in the following steps:-

Stepl: The noise is estimated using the 2nd level wavelet
coefficients that correspond to the frequency band of this
signal (50/60 Hz).
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Step2: Once the signal noise estimation is done, the threshold
value is estimated and further the detailed coefficients are
modified accordingly.
Step3: The updated wavelet coefficients are then
reconstructed to give the denoised signal
V. RESULTS

The implementation is done on various types of
noises using various wavelets and thresholds to finalize the
best wavelet and threshold combination for a particular type
of noise. For generating power line interference (PLI) a
power line signal of frequency 60Hz is added to the original
signal so that the input SNR (PLI)=8.0437 dB is obtained as
in fig. 6(a). For input ECG with EMG noise as in Fig 7(a),
white noise (20-250 Hz broadband with 10% of maximum
amplitude) is superimposed over pure ECG signal so as to
obtain an SNR (EMG) of 6.1817dB. For baseline wandered
noisy ECG as in Fig. 5(b), low frequency (below 0.6 Hz)
sinusoids are added to obtain the SNR of the input signal as
SNR (BW) = -2.4526 db.
The performance is measured on the basis of the mean square
Error (MSE) in accordance with the following formulae:

MSE = ~3¥ , (x(i) — dn(i))?,

And Signal to Noise ratio (SNR) of the input (noisy) ECG and
SNR of output (denoised) ECG.

> x0)?

SNR, N 2
> (@) —n@))?

input

=10log,,

2 X0
Y (x() - dn(i)?

SNR

=10log,,

output

Where, x (i) is the pure ECG signal, n(i) is noisy ECG,
dn(i) is denoised ECG and N is the total number of samples.
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Fig.5 (a) Power-Line affected ECG
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Fig.5(b) Power-Line corrected ECG Using rbio6.8 wavelet and minimaxi
hard threshold
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Fig. 6(a) EMG affected ECG
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Fig. 6 (b) EMG Corrected ECG using
coif5 wavelet and sqtwolog threshold.
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Table 1: SNR in denoised ECG in case of Power Line
Interference (Input SNR = 21.31dB)
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Table 5: MSE in denoised ECG in case of EMG Noise (MSE

Table 3:SNR in denoised ECG in case of Base Line Wander Noisy signal =0.00075)
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Fig. 8(a) Real time ECG signal from physionet database
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Fig. 8(b) DE noised ECG signal using db4 wavelet and heursure soft
threshold.

V1. CONCLUSION

The various types of wavelets and thresholds used in
this paper are good in performance. But for a particular type
of noise this paper comes out with a best combination of
wavelet and threshold to be used. Power Line Interference
noise is best removed using the bior6.8 wavelet with a
threshold combination of minimaxi hard threshold. The
Baseline Wander noise can be removed effectively using the
db45 threshold and minimaxi soft threshold. EMG noise is
removed using coif5 wavelet with a threshold combination of
sqtwolog hard threshold. Hence this paper comes out with
best combinations of Wavelet and threshold for a particular
noise. In this paper Real ECG signal from Physionet database
is taken and denoised using some of the wavelet and threshold
combinations available.
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