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Abstract—Energy efficiency has been the driving force 

behind the design of communication protocols for 

battery-constrained wireless sensor networks (WSNs). 

The energy efficiency and the performance of the 

proposed protocol stacks, however, degrade 

dramatically in case the low-powered WSNs are subject 

to interference from high-power wireless systems such 

as WLANs.In this paper we propose COG-MAC, a 

novel cognitive medium access control scheme (MAC) 

for IEEE 802.15.4-compliant WSNs that minimizes the 

energy cost for multihop communications, by deriving 

energy-optimal packet lengths and single-hop 

transmission distances based on the experienced 

interference from IEEE 802.11 WLANs. We evaluate 

COG-MAC by deriving a detailed analytic model for its 

performance and by comparing it with previous access 

control schemes. Numerical and simulation results show 

that a significant decrease in packet transmission 

energy cost, up to 66%, can be achieved in a wide range 

of scenarios, particularly under severe WLAN 

interference. COGMAC is, also, lightweight and shows 

high robustness against WLAN model estimation errors 

and is, therefore, an effective, implementable solution to 

reduce the WSN performance impairment when 

coexisting with WLANs. 
 

Index Terms—WSN, energy efficiency, cognitive 

networks, coexistence, IEEE 802.11, IEEE 802.15.4. 

I. INTRODUCTION 

The increasing number of different wireless 

technologiessharing the open spectrum bands, such as 

the 2.4GHzISM band, demands for a rethinking of 

the protocols regulatingthe spectrum access. As the 

medium access control (MAC)schemes are carefully 

designed for one given technology, theyare not 

anymore able to achieve the objective of efficient 

and"fair" sharing of the wireless resources when 

operating underinterference from heterogeneous 

technologies. 

In this paper we consider the specific case of the 

coexistenceof IEEE 802.11 wireless local area 

networks (WLANs) andIEEE 802.15.4-compliant 

wireless sensor networks (WSNs).Both technologies 

apply carrier sensing-based medium accesscontrol 

with collision avoidance. In addition, WSNs try 

tolocate the narrow frequency band with less harmful 

interferencefor their operations. Unfortunately, all 

these techniquesdo not avoid high interference and 

frequent packet losses in theWSN, which are mainly 

caused by the significantly differenttransmission 

bandwidths and powers of the two 

technologiescompeting for the same resource.As 

shown in [1], the  

WLAN terminals operate in a relativelybroad channel 

and at a higher transmission power than WSNs. 

Therefore, they are blind to the narrow-band, low-

powered WSN transmissions, and do not defer 

channel access, due to the overlapping WSN packet 

transmission. 

In all this, the WLAN transmissions remain basically 

unaffected by the low WSN interference, while WSN 

packets are lost. Fortunately, measurement results 

show that the WLAN traffic is rather bursty with long 

white spaces, when the channel is idle because all 

WLAN users are inactive [2]. Therefore, in order to 

maximize its performance, the WSN should be able 

to transmit in these long interference-free times, thus, 

being cognitive of the radio environment as imposed 

by 

the WLAN activity.  

In this paper we propose and evaluate a new 

CognitiveMAC (COG-MAC) protocol for wireless 

sensor networks,which extends the carrier sense-

based MAC and aims atminimizing the energy loss 

due tounsuccessful transmissionsover the interfered 

channel. Our paper provides the following 

contributions.1)We give a characterization of the 

WLANchannel usage patterns as seen by the sensor 

nodes, takinginto account the nodes’ limited channel 

estimation capabilities,and propose techniques for 

distributed WLAN usage pattern estimation.2) Based 

on these resulting WLAN channel 

usagecharacterization we design COG-MAC, that 

optimizes thepacket length and the transmission 

distance, and performsWLAN activity-aware channel 

access to ensure that WSNnodes transmit in the long 
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WLAN white space periods.3)We provide an 

accurate analytical model that describes 

theprobability of COG-MAC packet transmission 

success. We usethe model to optimize the WSN 

packet size and the single hopWSN transmission 

distance to minimize the normalizedenergy cost 

metric, which we define as the energy required 

tosuccessfully transmit and receive a unit of 

information over aunit of distance. 4) We show that 

all the basic componentsof COG-MAC are essential 

for achieving the objective ofenergy efficient 

communication, and COG-MAC, comparedto 

previous access schemes, reduces the normalized 

energycost up to 66%, and can significantly decrease 

the end-to-endenergy cost in a multihop WSN 

without increased delay. 

The rest of the paper is organized as follows. 

Relatedwork is presented in Section II. Section III 

describes the networking scenario and the 

interference and sensing models and Section IV gives 

the WLAN channel activity model. In Section V we 

describe the proposed protocol stack, followed by its 

mathematical analysis in Section VI. In Section VII 

we present a numerical evaluation of COG-MAC 

along with a comparison with traditional WSN MAC 

schemes, while a simulation study is presented in 

Section VIII. We concludethe paper in Section IX. 

 

II. RELATED WORK 

Energy efficient communications have been 

extensively studied for stand alone WSNs [3][4]. The 

key idea for energy efficiency in sensor networks is 

to minimize idle listening, by letting the sensors turn 

off their radios whenever idle, controlled by duty-

cycling [5][6][8][9], or by wake-up radios [10]. 

It is recognized, however, that cross-network 

interference can have significant effect on the 

network performance, as it is shown for coexisting 

WSNs in [11] and for WLAN and Bluetooth 

interference in [12][13].WSN multi-channel 

operation aims at avoiding this cross-network 

interferenceby tuning to the best available band for 

communication [14][15][16].These solutions are 

efficient as long as there existchannels with no or low 

interference, but lose effectiveness when all 

considered channels suffer from interference with 

similar statistical behavior. 

Therefore, as wireless channels are getting densely 

populated, it is important to design protocols that can 

work efficiently even in the presence of cross-

network interference. Many of the proposed solutions 

build on the known characteristics of the interfering 

networks. [17] employs narrowband sensing, with 

additional HW cost, to identify and utilize the 

channels, where the wide-band device can effectively 

coexist with narrow-band transmissions, while in 

[18], the sensors force the WLAN to back off by 

sending frequent (one 

per DIFS), high power jamming signals during their 

packet transmission, which needs complex PHY layer 

and leads to increased energy consumption in the 

WSN. Instead, the effect of interference is minimized 

without changing the WLAN behavior in [19] and 

[20] introducing WSN packet header and payload 

redundancy. 

Recent works investigate how to avoid WLAN 

interferenceby employing channel availability 

predictions. The case of a non-saturated single 

WLAN AP is studied in [21], modeling the packet 

arrivals at the users as a Bernoulli process. In [22] a 

Poisson arrival process is considered, and WLAN 

output buffers are modeled as M/G/1 queues, 

resulting in subgeometric idle period distribution. 

While these models capture the effect of the WLAN 

MAC, their generality is limited, since they are based 

on simple, rather unrealistic traffic models. 

To capture the effect of realistic network load, 

[2][23][24][25] use traffic traces to find the 

distribution of WLAN idle periods. These results 

show that idle periods can be short contention 

periods, in the range of hundreds of microseconds, or 

heavy-tailed white spaces, where WLAN users are 

inactive. As it is demonstrated in [25], the average 

white space length depends on the WLAN load and 

the traffic characteristics, and is in the milliseconds 

range. In [26] similar results are derived based on the 

self-similar nature of WLAN traffic. 

Considering that, due to the low bitrate, the 

transmissiontimes in the WSN are comparable to the 

average WLAN idle period length, it is important to 

capture and utilize the heavy tail characteristics of 

theWLAN channel usage. Therefore, in our work we 

apply the model of [2][27] where a mixture 

distribution is proposed to model the idle periods, 

capturing the two basic sources of inactivity, the long 

heavy-tailed white space periods, when the WLAN 

users are inactive, and the short contention windows. 

Given this WLAN channel usage model we claim 

that the WSN on one hand needs to avoid channel 

access in the contention windows and on the 

otherhand it needs to optimize transmissions in the 

long whitespace periods [28], which are the key 

functions in the proposed COG-MAC. 

III. NETWORKING SCENARIO, INTERFERENCE   

AND SENSING MODELS 

We consider a WLAN Access Point (AP) zone that 

covers an area where a WSN is deployed. The WSN 
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nodes are battery-powered and operate on a 

single 5MHz channel inside the 2.4GHz ISM 

band. They transmit information over multiple hops, 

and are able to estimate the distance to their 

neighboring nodes [29]. 

WLAN users are distributed inside the AP zone and 

operateon a 802.11 22MHz channel, covering the 

WSN channel. The WLAN transmission power is in 

the order of 15-20dBm. The WLAN terminals are 

blind to the WSN nodes [26], that is, the WLAN 

carrier-sense mechanism does not detect the 

lowpowerWSN signals, which results in collisions, 

and hence packet losses in the WSN. On the opposite 

side, the WSN nodes transmit with a signal power 

that is in the order of 0-3dBm [30] and, thus, their 

impact on WLAN operation is negligible [23]. 

Therefore, to ensure efficient WSN communication, 

sensor nodes need to consider the WLAN activity 

when transmitting. In the remainder of this section 

we clarify 

our assumptions on the interference and sensing 

models used throughout the paper. The signal 

propagation is assumed to be adequately described by 

a simple path-loss model. In order to correctly 

receive a packet, a WSN node needs to receive it with 

Signal to Interference plus Noise Ratio (SINR) above 

a given threshold, denoted as _SINR, where the 

interference is 

assumed to be caused by a single active WLAN 

transmitter. Then, the path loss-based propagation 

model results in circular interference zones around 

receiving sensors, with radius RI [31]: 

 

 
where r is the distance between the transmitting and 

receiving sensor, is the channel path-loss exponent, 

PWSN is the WSN transmission power, PWLAN is 

the fraction of WLAN transmission power inside the 

narrow WSN band, and PL0 and _2N denote the 

attenuation at 1m reference distance and the noise 

power, respectively. Whenever an overlap occurs 

between a WSN packet transmission and a WLAN 

transmission withinthe receiving sensor node 

interference zone of radius RI ,weassume that the 

WSN packet is lost. 

The WSN nodes perform channel sensing based on 

energy detection through their build-in Receiver 

Signal Strength Indicator (RSSI) [30]. In the 

proposed system two kinds of sensing are performed. 

Repeated sensing over long periodsof time for 

WLAN activity model estimation, and 

shorttimesensing for channel access control. The 

performance of both kinds of sensing is bounded by 

the maximum sensitivity level  0 of the sensor, 

stating the minimum signal level that can be detected 

[30]. Short sensing time leads to probabilistic energy 

detection, characterized by the probability of missed 

detection, pMD, when a signal is not detected, and 

the probability of false alarm, pFA, when the sensing 

results in “signal detected” decision, even when the 

channel is idle [32]. The false alarm probability pFA 

is a function of the sensing time ts and of the energy 

decision threshold, pFA(ts; )=Q(( � _2N 

)=(_2Np2=(fsts))), where fs denotes the sampling 

frequency. In this paper we consider a target pFA 

which gives as [32]: 

 

 
 

The missed detection probability, pMD, depends on 

the received signal power, PRx(d), given as a 

function of the distance to the transmitter d.It also 

depends on the decision threshold, which in turn is 

determined, using (2), by the target pFA: 

 

 
During the long-period sensing the sensors keep 

measuring thechannel to collect samples of active and 

idle period durations. Due to the longer sensing time, 

pFA approaches zero. The missed detection 

probability pMD also approaches zero inside the 

sensors ACCA, the CCA area, where all 

transmissions are detected, and approaches 1 outside 

the ACCA. 

Under the path-loss propagation model the CCA area 

is circular; its radius depends on the WLAN 

transmission power and can be controlled by tuning 

the CCA threshold[30]: 

 

 
 

We derive the COG-MAC performance model 

consideringpath-loss-based channel attenuation. 

However, the model can be extended for more 

generic signal attenuation models, at the expense of 

increased analytic complexity. In [33] we give the 

extended model, based on channel attenuation 

enhanced with 

log-normal shadowing, and evaluate the effect of 

shadowing on the protocol performance in Section 

VII. 

IV. THE WLAN CHANNEL ACTIVITY MODEL 
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We model the WLAN channel activity as a 

semi-Markovian system of active and idle 

periods as originally proposed in [23] and validated 

in [25]. We call this model the Global View, since it 

captures the global WLAN activity. Fig. 1(a) depicts 

the states of the Global View model and their 

merging into a two-state semi-Markovian chain. The 

states of Data, SIFS 

and ACK transmissions are grouped together into a 

single Active state and the states that represent the 

WLAN Contention Window period (CW) and the 

WLAN white space (WS) due to user inactivity are 

merged into a single Idle state. The distributions of 

the active and idle states, fA(t) and fI (t), 

respectively, define how long the WLAN channel 

remains in either state. As proposed in [23], a 

uniform distribution 

 

 
 

in a range [_ON; _ON] sufficiently models the active 

channel periods. The idle distribution is modeled as a 

mixture of uniformly distributed idle periods within 

[0;BK], corresponding to the WLAN contention 

periods, and long, zero-location generalized Pareto-

distributed idle periods with parameters that capture 

the heavy-tailed behavior of the white spaces. The 

percentage of contention periods p 2 (0; 1) 

determines the shape of the mixed idle distribution, 

which obtains the following form [23]: 

 

 
 

while the active distribution is given as: 

 

 
 

We define the WLAN load as the percentage of time  

thechannel is active due to WLAN operation: 

 

 
Additionally, this provides the probabilities of active 

and idlechannel at an arbitrary point in time, pA and 

pI, respectively. Our objective is that of estimating 

the parameters of the model by means of sensor node 

observations. Christo Ananth et al. [7] discussed 

about a method, Wireless sensor networks utilize 

large numbers of wireless sensor nodes to collect 

information from their sensing terrain. Wireless 

sensor nodes are battery-powered devices. Energy 

saving is always crucial to the lifetime of a wireless 

sensor network. Recently, many algorithms are 

proposed to tackle the energy saving problem in 

wireless sensor networks. There are strong needs to 

develop wireless sensor networks algorithms with 

optimization priorities biased to aspects besides 

energy saving. In this project, a delay-aware data 

collection network structure for wireless sensor 

networks is proposed based on Multi hop Cluster 

Network. The objective of the proposed network 

structure is to determine delays in the data collection 

processes. The path with minimized delay through 

which the data can be transmitted from source to 

destination is also determined. AODV protocol is 

used to route the data packets from the source to 

destination. 

 It holds that fA~(t) = fA(t), but f~I (t) 6= fI (t); 

8pCCA < 1. The observable idle channel 

Period consists of a random number of WLAN 

cycles, that is, consecutive idle and un-detected 

active periods, followed by an additional idle period. 

Its distribution, f~I (t), is, therefore, a random-term 

convolution-based function of the idle and active 

time distributions, fI (t) and fA(t), and of the 

observable load pCCA, and can be expressed in 

closed form only in the Laplace transform (LT) 

domain, as shown in [34]: 

 

 
 

where f_(s) denotes the Laplace transform of function 

f.We discuss the feasibility of parameter estimation 
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in [34][35], where we propose an estimation 

algorithm that integrates dynamically the 

collected samples, and therefore runs efficiently on 

memory-constrained sensor devices. 

 

 

V. THE COGNITIVE WSN 

We propose a WSN COGnitive Medium Access 

Control (COG-MAC) that employs WLAN usage 

prediction and channel sensing so as to minimize the 

energy cost for unicast WSN communication under 

WLAN interference. In particular, it aims at 

minimizing the transmission energy spent by sensors 

for transmitting and receiving data packets. COG-

MAC can be combined with some duty-cycling or 

wake-up enabled solution that is responsible for 

minimizing the energy spent due to idle listening. 

Therefore, the COG-MAC design does not consider 

the idle listening energy costs. 

The operation of COG-MAC is divided into two 

mainphases. The first one is the estimation and 

optimization phase, when a sensor listens to the 

channel and gathers samples of the active and idle 

times, estimates the Local View parameters and 

selects the optimal one-hop transmission distance and 

the optimal packet size. The second one is the 

transmission phase, when the sensor transmits and 

receives data packets. The sensor moves back to the 

first phase either periodically, or when it experiences 

a performance drop, suggesting that the estimated 

WLAN activity parameters are no longer valid (i.e., 

WLAN activity has significantly changed). 

A. Estimation and optimization 

During the estimation phase potential transmitter 

(TR) and receiver (RR) sensors listen to the channel 

and gather active and idle times for estimating the 

WLAN channel activity. As shown in Fig. 2, they 

perform the measurements for the maximized CCA 

area ACCA (denoted by AT CCA and AR CCA for 

TR and RR respectively) by using the maximum 

sensitivity level  0, leading to RCCA = RCCA( 0). 

Based on these measurements they derive the Local 

View parameters, that is, the parameters of the 

functions fA(t); fI (t), and pCCA. The required 

number of the samples and thus the length of 

theestimation phase depends on the target estimation 

accuracy,which in turn is determined by the 

sensitivity of COG-MAC.Therefore, we discuss this 

issue in Section VII. 

In addition, for a better estimate of the spatial 

distributionof the active WLAN users, each sensor 

also evaluates pT CCA, the common load it can 

observe within the overlap of the CCA 

areas.Specifically, it measures the load in the disk 

area A^T 

CCA by filtering the measurements with a changed 

sensitivity level, such that for a TR–RR distance r, 

^RCCA =RCCAr. At the end of the estimation phase 

the sensors receive the observable load values from 

the potential receivers, denoted by pR CCA. 

 

 
Based on the locally estimated and received WLAN 

channel activity model parameters, the sensors select 

the transmission parameters that are expected to 

result in minimum energy consumption per bit and 

meter, according to the model and the 

implementation given in Section VI. Specifically, 

they optimize the packet size, to trade-off the 

probability of interference with a new WLAN 

transmission and the useful information transmitted 

per packet. They optimize the transmission distance, 

to trade-off the probability that a new WLAN 

transmission does not cause harmful interference and 

WSN packet transmission can continue even after the 

white space period, and the progression towards the 

multihop destination. 

B. Transmissions with COG-MAC 

The estimation and optimization phase is followed by 

the transmission phase when actual network 

operation occurs. We assume that the WSN operates 

under a duty-cycling or wakeup radio based protocol, 

to limit the energy that is spent in idle listening 

[5][10]. In case of duty-cycling, the WSN nodes are 

synchronized. Synchronization gaps are, however, 
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expected, as a result of CPU clock drift, and 

have to be 

accounted for. Their maximum value tmax SYNC is 

determined by the frequency of synchronization 

dataexchange.Fig. 3 shows the COG-MAC operation 

within a duty-cycle for potential transmitters (TR) 

and receivers (RR). The duty cycle of the TR nodes 

starts with a guard time (denoted as SYNC in the 

Figure) equal to tmax SYNC, ensuring that channel 

sensing and transmission do not overlap due to the 

lack of perfect synchronization. The medium access 

control is a modified CSMA/CA with the key 

component of dual channel sensing. As it is shown in 

Fig. 3, the on time of the duty cycle begins with two 

short channel sensing measurements 

 

 
 

with a duration of ts, separated by a time gap of tgap, 

whereON tgap BK. The sensor’s RF circuit can be 

powered-off between the short channel 

measurements. If the channel state is correctly 

detected as idle at both measurements, the sensors 

can safely assume that the spectrum was idle in the 

entire time and characterize the idle period as a white 

space. The operation in the rest of the cycle is 

determined by the sensing result. If any of the 

measurements have indicated an active state, the 

sensor immediately transits to sleep mode to save 

energy. Instead, sensors with idle measurements stay 

awake and follow a CSMA/CA-based channel access 

with RTS/CTS exchange. RTS/CTS has been shown 

to be beneficial in [28], as it allows TR and RR to 

share their view on the channel status, and increases 

the probability that the current period is indeed a long 

white-space (and not the case when a WLAN station 

is transmitting outside the CCA area), as the total 

observable load includes the percentage seen by the 

RR node. We evaluate the usefulness of RTS/CTS 

under fixed packet size in Section VII. Sensors are 

assumed to transit to sleep mode after packet 

transmission, and retransmit packets, if required, in 

consecutive duty cycle periods. 

VI. COG-MAC OPTIMIZATION 

In this Section we define the COG-MAC energy 

consumption model, and formulate the packet size 

and transmission distance optimization problem. This 

formulation allows us to trade-off the probability of 

successful packet transmission with its usefulness, 

considering the amount of informationtransmitted 

and the distance travelled. Then we present 

thedetailed analytic model of COG-MAC that is 

required for the optimization. Due to space limitation 

the presentation is restricted to the case of perfect 

synchronization, RTS/CTS-based access and simple 

path-loss model. Interested readers can find the 

respective model extensions in [28][33]. Moreover, 

in order to focus on the effect of WLAN interference, 

we consider the case of low WSN load, when the 

probability of sensors competing for the channel is 

low. The model can be extended for the high load 

case, including expected delays of channel access due 

to contention resolution. 

A. Energy efficiency optimization 

COG-MAC consumes energy for computing and 

storing the optimal transmission parameters, for 

packet transmission, and for sensing, listening and 

packet reception. Below we focus on the energy spent 

for radio operations, as their energy consumption in 

typical sensor nodes is at least two orders of 

magnitude higher than that of computations. We 

consider the WSN communication to be energy 

optimal when the energy cost of transmitting and 

receiving a unit of information at unit distance is 

minimized. Therefore, we define the main 

performance measure as the energy consumption at 

the TR and RR nodes until successful packet 

delivery, that is, through the sequence of possibly 

unsuccessful and eventually successful RTS/CTS 

handshake and packet transmission attempts, 

normalized by the amount of information transmitted 

and the distance covered. 

We consider a fixed power cost, PWSN ON, for 

channel sensing, transmitting, receiving, and idle 

listening during the RTS/CTS handshake. 

Consequently, the expected TR energy cost of 

attempting a handshake is eTRhs = PWSN ON (ths + 

2ts), where, ths are, respectively, the durations of the 

repeated sensing and the handshake. The latter 

includes the synchronization gap and the RTS/CTS 

process. Let T denote the event of successful 

handshake. Assuming that the WLAN channel state 

is uncorrelated at the consecutive handshake 

attempts, the number of unsuccessful handshakes has 

geometric distribution with parameter PfT g, and the 

expected energy cost until handshake success 

becomes: 
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At the receiver, the handshake energy cost, 

eRRhs , depends on whether the node has 

participated in the handshake. Under perfect 

synchronization and considering ths >> ts the 

expected cost can be approximated as: 

 

 
 

Similar to (9), the expected handshake cost will be: 

 
with PfTP jT g denoting the probability that RR has 

participatedon an, otherwise, failed handshake 

attempt. The energy cost for transmitting and for 

receiving a packet with transmission time t is, 

similarly, PWSN ON t. If a packet transmission 

attempt fails, a new handshake must be established 

before attempting a new transmission. Consequently, 

the expected energy cost of successful packet 

delivery with packet transmission time t becomes: 

 

 

 
 

where RWSN and L0 denote the WSN transmission 

rate andthe packet overhead, respectively. (13) can be 

easily modified to consider only t or r WSNs with 

known node distance or packet size respectively. 

We derive the optimal values numerically by solving 

theabove optimization problems applying the 

bisection method. For practical implementation the 

optimization problem can be solved a-priori, and the 

optimal packet size and next-hop distance pairs for a 

set of WLAN load parameter vectors can be stored in 

the sensor. 

B. COG-MAC probability of successful handshake 

and transmission 

In this Section we derive analytically the probabilities 

of successful handshake and packet transmission, 

required in (9),(12), respectively. The TR starts a 

handshake by transmitting an RTS packet, if its dual 

sensing process gave idle channel status. Let  

the events that the i-th channel measurement is idle at 

the TR and RR nodes, respectively, with i = 1; 2. The 

Handshake attempt is successful if the RR node is 

awake, as a result of a pair of idle measurements, 

and, additionally, if the communication is not 

disturbed by an ongoing, miss-detected WLAN 

transmission, or by a WLAN transmission that starts 

during the period of the handshake within the TR or 

RR interference regions. After a successful 

handshake the packet transmission itself will be 

successful, if all WLAN sources within the 

interference region of the RR remain silent during the 

whole packet transmission time. We derive the 

probability of successful handshake and transmission 

in five steps. 

1) We define the spatial distribution of WLAN 

sources, as seen by the TR node, based on the a priori 

measured observable load values and the TR-RR 

distance r. 

2) Using Bayesian inference we derive the 

probability of idle and active channel status at the TR 

and RR nodes, given the observed idle state 

measurements at the TR. 

3) We derive the distribution of the interference-free 

time that remains after the dual sensing process. 

4) Based on the previous steps, we express the 

probability of a successful handshake between the TR 

and the RR node. 

5) Finally, conditioned on the successful handshake, 

the probability of successful packet transmission 

success g is expressed as a function of transmission 

distance and packet length. Let S 2 S = fIg [ fAXY(x; 

y) : x 2 X; y 2 Yg be the channel status. The status is 

either idle, I, or active, AXY(x; y), with a WLAN 

source at distances (X; Y ) = (x; y) 2 X _Y from the 

TR and RR nodes, respectively (see Fig. 2). X _ Y 

denotes the set of all possible WLAN source 

positions. 

S(i) 2 S denotes the channel status during the i-th 

sensing measurement, where i = 1; 2. 

1) Spatial distribution of WLAN interfering sources: 

The spatial distribution of WLAN sources around the 

TR and RR nodes affects their miss-detection 

probabilities, as well as the probability that such a 

source within the TR/RR interference region starts to 

transmit during the WSN packet transmission. 

As shown in Fig. 2, the TR can estimate the joint 

distribution of the distances X,Y of a possible active 

WLAN source based on the a-priori known 

observable load values, pR CCA, received from RR, 

and ^pT CCA, measured by the TR itself. Since A^T 

CCA _ AR CCA, an arbitrary WLAN source lies in 

the area A^T CCA with probability ^pT CCA, in the 

area AR CCA n A^T CCA with probability pR CCA 

^pT CCA, and in the AP area outside AR CCA 

otherwise. Since there is no additional a-priori 

information available about the WLAN source 

locations, the TR assumes that these sources are 

located uniformly at random inside the respective 

areas. In addition, we approximate the AP area as a 

disc around TR with radius Rmax. This 

approximation does not affect the model accuracy 

significantly, unless the TR happens to be very close 
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to the border of the AP area. Let fX(x) 

denote the unconditional probability density 

function of distance X, for uniformly random WLAN 

source locations in an disk area around TR with 

radius Rmax. Similarly, fY jX(x; y) denotes the 

density of the distance Y from the RR node, given 

X=x, and fXY (x; y) = fX(x)fY jX(x; y) denotes the 

unconditional joint distance density. 

whereRCCA denote the ratio of the observable areas 

A^T CCA and AR CCA, respectively, over the total 

WLAN AP area with radius Rmax. Similarly, the 

conditional distance density pAY jX(x; y), can be 

expressed as: 

 

 

 
 

 
2) Bayesian inference of channel status: We derive 

now the posterior distribution of channel status, S(1); 

S(2) given the observed TR idle measurements, 

applying Bayesian formulation. To calculate Pf S(1); 

S(2)T g we use the following decomposition: 
 

 
 

Conditioned on the first idle measurement the 

channel statusis either idle or active with the 

following probabilities: where pA(1) X (x) = 

pA_pAX(x) is the probability that a WLAN source is 

active at a distance x from the TR at the time of the 

first measurement, and pA(1) XY (x; y) = pA _ 

pAXY (x; y) is the probability that it is active at 

distances x; y from TR and RR respectively. To 

derive the second term of (16), we first express the 

status transition probabilities, PfS(2)jS(1)g, following 

Fig. 4. For I(1) (Fig. 4(a),(c)): 

 

In the above, FRI (t) denotes the distribution function 

of theremaining idle time, TRI , As the time of the 

first measurement is uniformly distributed within the 

WLAN idle period: FRI (t) = R1 t (1 t z )fI (z)dz. 

Similarly, for S(1) = A(1) XY; 8x; y we obtain (Fig. 

4(b)): 

 

 
Finally, we define the channel status probabilities 

conditioned on the second idle measurement and 

based on the a-priori status transition probabilities 

calculated in (20)-(23): 
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3) Conditional remaining interference-free time: We 

define TRF , T(TR,RR) RF as the total interference-

free time remaining at the RR sensor and at both the 

TR and RR sensors, respectively, after the sensing 

process at the nodes, and derive the densities fRF 

jS(1);S(2) (t) and f(TR,RR) RF jS(1);S(2) (t), given 

the channel status at the time of the TR 

measurements. TRF includes the interval between the 

end of the second sensing measurement and the start 

of the following active WLAN period, and a 

geometric number of successive WLAN cycles, i.e. 

pairs of successive active and idle WLAN periods 

with density fC(t) = fI (t)_fA(t), representing 

consecutive WLAN 

Transmissions outside the interference area. The 

distribution of TRF can be numerically calculated 

with the help of Laplace transform, similar to (8) and 

for all S(1); S(2) 2 S: 

 
For additionally undisturbed TR, we obtain the 

density: 

 
Where pIN, the probability that an activated WLAN 

source interferes with the RR reception is: 

 
and the probability that the source lies, additionally, 

inside the TR interference area is given as: 

 

 
The interval between the end of the second sensing 

measurement and the start of the first active WLAN 

period is denoted by TRf , and its density depends on 

the channel status. In the derivations we approximate 

the sensing period as Ts = 2ts + tgap _ tgap, since 

tgap _ ts. 

    For I(1); I(2) (Fig. 4(a)) we safely classify the idle 

period as white space, and consequently. 

 

 
 

In the case (A(1)XY; I(2)) (Fig. 4(b)), a transition 

from active to idle status occurs sometime z _ tgap 

after the first TR measurement, and the idle period 

may also be a back-off, which gives: 

 
For S(2) = A(2)XY (Fig. 4(c)) the channel is active at 

the second measurement, and the remaining time, 

TRf , is given by the remaining active and the 

following idle period: 

 

 
Finally under (A(1)XY ;A(2) XY ) (Fig. 4(d)), the 

active period may be continuous between the two 

measurements, or interrupted by a short idle time. In 

the case of continuous activeperiod: 

 

 
while in the case of a short idle period between the 

measurements, (x1; y1) 6= (x2; y2): 
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    4) TR-RR handshake success: For a TR 

node aiming at communicating with an RR 

at distance r we calculate the probability of 

successful handshake, conditioned on the idle TR 

measurements. The event of handshake success, 

requires, first, idle measurements at the receiver, 

^I(1)R ; ^I(2)R . Second, it requires that no WLAN 

transmission interferes with the RTS/CTS handshake. 

Since the duration of the handshake is expected to be 

significantly lower than the WLAN activity 

dynamics, we approximate the second constraint as 

the requirement that all the active WLAN sources lie 

outside the interference regions of both the TR and 

the RR for the entire handshake period: 

 

 
If the channel status is indeed idle during both of the 

TRmeasurements, i.e., (S(1); S(2)) = (I(1); I(2)), the 

handshake is successful if there is no false alarm at 

the RR, and the remaining interference-free time at 

both the RR and TR is longer than the total duration 

of the handshake ths. That is: 

 
 

With a similar reasoning, the conditional handshake 

successprobability for the remaining channel status 

cases becomes: 

 

 
The probability of handshake success is then 

calculated byaveraging over all possible cases (Eq. 

(42)). Finally, we calculate the conditional 

probability PfTP jT g needed in (11) applying 

Bayesian inference: 

 

 

 
5) Successful packet transmission: Finally, let us 

expressthe probability of successful packet 

transmission, now conditioned on the success of the 

handshake. We update all (S(1); S(2)), through 

Bayesian inference: 

 

 
where PfT j^I(1)T ; ^I(2) T g is defined in (42), the 

terms PfT jS(1); S(2)g are derived in the previous 

section and PfS(1); S(2)j^I(1) T ; ^I(2) T g is derived 

from (16). Similarly, we update the total remaining 

interference-free time, TRF , with respect to the total 

length of the handshake time, including the 

synchronization delay, tThs = ths + tSYNC, as it is 

measured by the TR node: 

 

 
where the respective density functions are given in 

(28) and(29), and the approximation is valid due to 

the relatively short WSN handshake time with respect 

to the average WLAN cycle duration. Finally, from 

(42) and (45) we express the probability that a packet 

of transmission duration t will be successfully 

transmitted as: 
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where the summation is over all possible channel 

statusS(1); S(2). 

VII. NUMERICAL PERFORMANCE 

EVALUATION 

We evaluate the performance of COG-MAC, based 

on the analytic model in Section VI, by comparing it 

to noncognitive WSN MAC schemes that – similar to 

COG-MAC – are controlled by duty-cycling. In 

particular, we consider an ALOHA-type Random 

Access MAC (RAND), where sensors transmit 

without any channel sensing before transmission, and 

a standard 802.15.4-compliant carrier-sense (CSMA) 

MAC scheme, where WSN nodes perform the 

standard channel 

 

 
Sensing and RTS/CTS handshake. The analytic 

models forCSMA and RAND are similar to that of 

COG-MAC and are not presented here due to space 

limitation. Interested readers can find them in [33], in 

Sections VII-A, VII-B, respectively. In addition, we 

evaluate the effect of the channel model on the 

protocols’ performance, by considering lognormal 

shadowing. Shadowing affects both channel sensing 

and interference and, therefore, the resulting energy 

cost. We present the analytic model extensions for 

COG-MAC and CSMA under log-normal shadowing 

in Sections VI-C and VIIA of [33], respectively. 

Finally, to evaluate the importance of the handshake 

process, we compare COG-MAC performance with 

and without RTS/CTS mechanism, derived from the 

model in [28]. For all schemes we consider the 

normalized energy cost metric under optimized 

transmission distance and packet size as defined by 
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(13). The default parameters of our reference 

evaluation scenario are listed in Table I. 

A. Comparison with RAND & CSMA schemes 

 

Fig. 5(a) compares the normalized energy cost of 

COGMAC and CSMA with respect to the parameter 

p, the percentage of short WLAN back-off intervals, 

and E the average length of white spaces, controlled 

by the shape parameter _ of the generalized Pareto 

distribution. We set the observable load at the 

receiving sensor at pR CCA = 0:5. To consider 

random transmitter location we randomize ^pT CCA, 

following a normalized binomial distribution, in [0; 

pRCCA]. In general, increasing p or decreasing E 

increases the load and consequently the normalized 

energy consumption for both protocols. Fig. 5(a), 

however, shows that COGMAC significantly 

outperforms CSMA. In Fig. 5(b) we keep the load 

constant at _ = 16% and 60%, and increase the 

percentage of the back-off periods p. Even in this 

case COGMAC shows better normalized energy 

consumption compared to both CSMA and RAND. 

The energy cost of COG-MAC is only marginally 

affected by the growing percentage of back off 

periods. In contrast, RAND and CSMA, due to the 

fact 

that they have to optimize transmission parameters 

for the mixture idle time distribution, cannot provide 

energy efficient communication for a large range of 

p. Under high percentage of back-off idle periods 

RAND exhibits a performance drop due to the 

absence of the RTS/CTS mechanism, as failed 

transmission attempts result in a high energy cost at 

the receiving nodes. On the contrary, handshake-

enabled protocols are more energy efficient due to a 

lower rate of packet transmission failures. 

1) Impact of channel shadowing: Fig. 6(a) compares 

COG-MAC to CSMA under log-normal shadowing 

channel model and for various shadowing standard 

deviation (_sh) values. Shadowing on the wireless 

channel degrades the WSN communication energy 

efficiency as it adds uncertainty in both the WLAN 

spatio-temporal model estimation and the 

interference calculation, and the degradation is 

significant for COG-MAC at high WLAN load. Still, 

the large performance gap between the two solutions 

remains. 

2) Impact of the RTS/CTS handshake mechanism: 

Fig. 6(b)compares the efficiency of COG-MAC with 

and without RTS/CTS exchange under increasing 

WLAN channel load decreasing average white-

spacesduration – and for fixed andoptimized WSN 

packet lengths. We observe that RTS/CTS is always 

beneficial under optimized packet lengths. As 

discussed in Section VII-A the absence of the 

handshake mechanism degrades the energy efficiency 

under high channel 

 

 

 
load. For fixed packet sizes the effect of RTS/CTS 

handshakedepends on the WLAN load. Under high 

load values, that is, under short expected white-space 

durations, the increased performance due to efficient 

white-space discovery is limited, thus, it does not 

compensate for the additional overhead of the 

RTS/CTS mechanism. 

3) Impact of the receiver observable load: Let us now 

investigate the effect of the observable load pR CCA 

on energy efficiency. Fig. 7 compares the CSMA and 

COG-MAC normalized energy cost as a function of 

pR CCA and for different p and E I(WS values. For 

the CSMA scheme (Fig. 7(a)) the energy cost 

increases monotonically with the observable load, 

since the interference-free time decreases. We can see 

similar trends for COG-MAC for low p values in Fig. 

7(b). On the contrary, at high p value the COG-MAC 

energy cost decreases at high pR CCA, because in 

these scenarios COG-MAC can efficientlyfilter the 

short back-off periods. As a result, COG-MAC can 

provide energy efficient communication despite the 

limited sensing range, and can decrease the energy 

cost with up to 66% compared to CSMA. 

4) Sensitivity to the model parameters: COG-MAC 

may not be able to use optimal packet size and 
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transmission distance due to imperfect 

WLAN Local View parameter estimation 

and due to the limited number of options that can be 

stored in the look-up table in the sensor memory. 

Here we study the effect of estimation errors on the 

energy efficiency. We evaluate the energy cost under 

a given WLAN activity 

model realization, while COG-MAC variables are 

optimized in (13) considering erroneous p and  

values. (The results for the other model parameters 

are similar.) We present comparative results for 

CSMA and RAND. Fig. 8 shows the effect of the 

imperfect estimation of p, for low and high p values. 

We see that COG-MAC is not sensitive to estimation 

error, unless pis heavily overestimated, since the dual 

sensing filters out the back-off periods. CSMA and 

RAND, however, need to take the short back-off 

periods into account for the optimization, and 

therefore the imperfect estimation of p deteriorates 

their performance. 

 
 

 
 

 

Fig. 9 depicts the sensitivity of the performance on 

the 

estimation of _, the shape parameter of the white 

space 

distribution. For the considered scenario CSMA and 

RAND are not sensitive to estimation errors due to 

the high p value that makes the estimation of the 

actual WLAN white spaces less important. COG-

MAC, however, transmits, primarily, in the white 

spaces, and therefore the over- and underestimation 

of _ leads to increased energy consumption. Still up 

to 50% error in estimating _ does not have significant 

effect on the energy cost. Based on [34], this level of 

accuracy can 

be achieved by considering 100-1000 idle period 

samples. This in turn leads to an estimation time in 

the order of 1- 10 seconds, depending on the average 

lengths of the idle periods. The low sensitivity to 

estimation errors allows even the use of look-up 

tables with low granularity. These confirm that the 

proposed approach with local channel estimation and 

parameter optimization based cognitive access is a 

viable solution for sensor networks. 

B. The effect of loose synchronization 

In Fig. 10 we evaluate the energy cost of COG-MAC 

considering the case of imperfect synchronization of 

the TRand RR duty-cycles, based on the model in 

[33], Section VIB. We consider synchronization gaps 

uniformly distributed in (0; tmax 

sync), E[tSYNC] = tmax sync=2. We show the effect 

of E[tSYNC] on the normalized COG-MAC energy 

cost as a function of the WLAN load, for low and 

high p values. 

Since the shifted double sensing procedures require 

more time, synchronization gaps decrease the 

probability of successful handshake and reduce the 

interference-free time for packet transmission, and 

therefore can increase the energy cost, as 

demonstrated in Fig. 10(a). Fig. 10(b), however, 

shows that for high p values and low network load 

synchronization gaps may slightly improve protocol 

performance. The time-shift of the TR and RR 

sensing times increases the chance of detecting a 

WLAN transmission after undetected active period 

and back off time, and consequently increases the 

probability that the transmission happens in WLAN 

white space. All in all, synchronization offsets in the 

order of 100_sec have only a slight impact on the 

protocol performance. 

VIII. A SIMULATION STUDY OF COG-MAC 

The model-based evaluation in Section VII is subject 

to the two assumptions, i) the WLAN sources are 

uniformly distributed around the TR, and ii) the 

consecutive handshake and packet transmission 
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attempts in COG-MAC observe independent 

WLAN channel status. In addition, to 

simplify the derived analytical expressions, we made 

three approximations 

in the model, in (10), (37) and (45). We present, here, 

a simulation study of COG-MAC, where the above 

assumptions and approximations are removed to see 

their effect on the protocol performance. Moreover, 

we evaluate COG-MAC in a multihop WSN. 

A. Implementation and simulation scenario 

We simulate the coexisting networks in the NS-

Miracle framework [36]. The 802.11b-compliant NS-

Miracle module is used for the WLAN nodes. For the 

WSN COG-MAC module we implemented model 

estimation, sensing, access control and packet 

reception model, as described in Sections III,V. WSN 

packet losses trigger retransmissions, occurring at 

consecutive duty-cycles of 50msec length. We 

consider a single WLAN AP area with a limited set 

of wireless terminals (WT), operating in the high 

SNR regime. We inject WLAN traffic by generating 

a packet stream that creates a sequence of idle and 

active periods that follow the proposed parameterized 

Global View model, and assign the packets to the 

WTs and the AP independently at random. To 

simulate a practical case we allocate 50% of the 

injected packets to the AP, assigning the rest, 

uniformly, at the WTs. We consider saturated buffer 

at the WSN TRs to minimize simulation time. 

B. Model validation 

We perform controlled experiments for a set of 

WLAN traffic parameter pairs (p;EI(WS)) as follows. 

For each experiment we first place a single RR sensor 

uniformly at random at a distance lower than RCCA 

from the AP and deploy 10 WTs uniformly at random 

outside the AR CCA. Thus the RR observes50% of 

the WLAN traffic (pR CCA = 0:5). We determine the 

optimal distance r_ and the packet size for possible 

^pT CCA values by the optimal solution of (13), and 

place the TR randomly on circle with radius r_ 

around the RR. Clearly, this topology leads to non-

uniform WLAN source distribution around TR. To 

achieve statistically meaningful averages we 

randomize the location of the RR and the 10 

deployed WTs for 100 simulation runs within each 

experiment. Each simulation run terminates when the 

TR sensor completes the transmission of 500 packets, 

or, alternatively, when the simulation time exceeds 

1000 seconds. The energy cost is calculated based on 

the number of the handshake and transmission 

attempts that each packet experiences. 

Fig. 11 compares the simulation and analytic results 

forthe normalized energy cost with respect to p (Fig. 

11(a))and with respect to increasing WLAN load _, 

by decreasingthe expected white space durations 

(Fig. 11(b)). Despite a slight overestimation of the 

communication energy cost by the analytic model, 

we can conclude that the model sufficiently captures 

the performance of COG-MAC. The analytically 

evaluated performance of CSMA is also plotted for 

the sake of comparison. 

Fig. 11(c) shows the effect of the duration of the 

WSN duty-cycle on COG-MAC performance, and 

thus evaluates the modeling assumption of 

independent WLAN channel status at the consecutive 

dual sensing events. We consider the average per 

packet handshake and transmission attempts for duty-

cycle periods from 15ms to 100ms. The WLAN load 

increases with p, while E[IWS] = 36msec. As the 

duty-cycle duration increases above 50msec, the 

simulated performance matches closely the analytic 

one, and for 100ms the performance difference is 

negligible, that is, the time between successive 

handshake or transmission attempts is long enough 

for COGMACto experience uncorrelated channel 

conditions. As the practical WSN duty-cycles are 

usually much longer than the ones we consider, we 

conclude that the assumption of independent WLAN 

status during consecutive COG-MAC cycles is 

practical. 

C. Multihop COG-MAC performance analysis 

Finally, we study the impact of COG-MAC on the 

energy efficiency of multihop WSN communication 

under WLAN interference. COG-MAC with energy 

optimized shortest path (SP) routing is compared to a 

benchmark solution with CSMA/CA and the widely 

accepted Collection Tree Protocol (CTP) [37], that 

finds the shortest path with the expected number of 

required transmissions per packet as the link weight. 

In COG-MAC the optimal packet sizes may differ for 

the links along a shortest path. To avoid the need for 

packet fragmentation, the packet size is chosen at the 

source node as the minimum of all optimal packet 

lengths along the path. Packet size is selected 

similarly for the benchmark system. 

As shown in Fig. 12, we consider a square WSN grid 

with 5m inter-node distance, and a source and a 

destination node in the opposite corners. We place 

the WLAN AP in the center of the grid, and many of 

the WTs close to the AP, to generate a heterogeneous 

spectrum occupancy, with higher load around the 

center. We compare the performance of the two 

solutions for a constant _I(WS) and increasing p 

value, i.e., increasing WLAN load. Fig. 12(a) shows 

the transmission paths for two case studies with p = 
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0:2 and p = 0:8, respectively. For low p 

value, that is, low WLAN load the shortest 

paths are identical and traverse along the line 

connecting the source and destination node. For high 

load, however, the CSMA 

based solution needs to avoid the area around the AP, 

andredirects the transmission path to the borders, 

where the WLAN interference is lower. At the same 

time COG-MAC can safely transmit along the 

diagonal. Fig. 12(b) gives the normalized energy and 

delivery delay per transmitted bit over the source-

destination transmission path. The COG-MAC based 

solution outperforms the benchmark system, 

particularly when the back-off period percentage 

increases but the WLAN load is still moderate. We 

can conclude that COG-MAC leads to significant 

energy savings and lower delays in multihop WSNs, 

and, additionally, to optimal routes that are 

insensitive to WLAN load changes. 

 

 

 
 

 

We consider a single WLAN AP area with a limited 

set of wireless terminals (WT), operating in the high 

SNR regime. We inject WLAN traffic by generating 

a 

packet stream that creates a sequence of idle and 

active periods that follow the proposed parameterized 

Global View model, and assign the packets to the 

WTs and the AP independently at random. To 

simulate a practical case we allocate 50% of the 

injected packets to the AP, assigning the rest, 

uniformly, at the WTs. We consider saturated buffer 

at the WSN TRs to minimize simulation time. 

    The COG-MAC based solution outperforms the 

benchmark system, particularly when the back-off 

period percentage increases but the WLAN load is 

still moderate. We can conclude that COG-MAC 

leads to significant energy savings and lower delays 

in multihop WSNs, and, additionally, to optimal 

routes that are insensitive to WLAN load changes. 
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IX. CONCLUSION 

In this paper we proposed COG-MAC, a cognitive 

MAC scheme for energy efficient WSN operation 

under WLAN coexistence. The proposed scheme is 

based on controlling the interference from the 

coexisting WLAN by predicting its behavior with a 

smart channel sensing mechanism that takes into 

consideration the WLAN channel usage model. 

Energy cost minimization is achieved by optimizing 

the WSN single hop transmission distance and packet 

length, based on the estimated parameters of the 

WLAN channel usage model. To solve the 

optimization problem we derived an analytic model 

for the successful single-hop WSN packet 

communication. Through numerical evaluation we 

showed that COG-MAC significantly outperforms 

other MAC protocols, especially in case of severe 

WLAN interference. The evaluation also revealed 

that both COG-MAC optimization of packet size and 

transmission distance and smart channel sensing are 

key mechanisms for increasing energy efficiency. We 

also presented simulation results to demonstrate the 

accuracy of the analytic modeland to show that COG-

MAC achieves significant gains even in multihop 

environment. Consequently, COG-MAC provides a 

distributed solution that exploits existing 

functionalities available in current commercial sensor 

hardware, and archives energy-efficient 

communications in the presence of coexisting WLAN 

networks. 
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