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Abstract—For human-centered automation, this study presentsa 

wireless sensor network using predicted mean vote (PMV) as a 

thermal comfort index around occupants in buildings. The net-work 

automatically controls air conditioning by means of changing 

temperature settings in air conditioners. Interior devices of air con-

ditioners thus do not have to be replaced. An adaptive neurofuzzy 

inference system and a particle swarm algorithm are adopted for 

solving a nonlinear multivariable inverse PMV model so as to de-

termine thermal comfort temperatures. In solving inverse PMV 

models, the particle swarm algorithm is more accurate than ANFIS 

according to computational results. Based on the comfort temper-

ature, this study utilizes feedforward–feedback control and digital 

self-tuning control, respectively, to satisfy thermal comfort. The 

control methods are validated by experimental results. Compared 

with conventional fi xed temperature settings, the present control 

methods effectively maintain the PMV value within the range of 

 and energy is saved more than 30% in this study. 
 

Note to Practitioners—For advanced control of unitary air condi-

tioners in rooms, air conditioners may have to be retrofitted or con-

nected with extra devices by wire connection, whose processes may be 

difficult for users, and inappropriate installation may damage 

original air-conditioning units. This study hence presents a nonin-

vasive method for indoor thermal comfort with a wireless sensor 

network. The present method facilitates hardware implementation 

without changing interior devices of the air conditioner. The wire-less 

sensor network measures temperature, air velocity, and hu-midity 

around occupants and further transmits temperature com-mands for 

air conditioner control. Based on the measured data, a PMV model is 

adopted to evaluate thermal comfort. Using an inverse PMV model 

with feedforward–feedback control and self-tuning control, 

respectively, this study aims to automatically main-tain human 

thermal comfort as well as save energy. The ANFIS model and a 

particle swarm algorithm are used to solve the in-verse PMV model 

and determine the thermal comfort tempera-ture. Based on that 

temperature, feedforward–feedback control, and self-tuning control 

are used to determine appropriate temper-ature settings in the air 

conditioner so as to change the cooling ca-pacity and maintain 

thermal comfort. Experimental results show that the present control 

method can maintain thermal comfort and saves 30% more energy 

than the conventional method. 
 

 
Index Terms—Adaptive neurofuzzy inference system, 

automaticair conditioning control, particle swarm algorithm, 

predicted mean vote (PMV), self-tuning control. 

 
 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 
 

Nowadays, most of environmental problems are closely linked to 

en-ergy consumption. The energy consumed in buildings accounts for 

40% of the total energy consumed in the entire world. Moreover, air-

con-ditioning systems consume about 40%–50% of the total 

electricity use in buildings. Therefore, energy control of air 

conditioning systems in buildings deserves research. 
An air conditioning system is composed of a compressor, a con-

denser, an expansion valve or a capillary tube, and an evaporator. In 

order to improve efficiency and maintain indoor thermal comfort, a 

lot of research has been carried out to control compressors, control 

the opening of expansion valves, and control fan speeds of air 

conditioners. For the sake of effectively controlling air-conditioning 

units, the air conditioners may have to be dissembled and the units of 

air conditioners may be retrofitted or connected with extra devices by 

wire connection. The process may be difficult for oc-cupants. In 

addition, temperature sensors are not always placed at de-manded 

spots around occupants.  
By contrast, this paper presents a method by means of transmitting 

the temperature commands via a wireless sensor network to control 

air conditioner operation for occupants’ thermal comfort. The 

wireless network is also utilized to obtain environment information 

including the temperature, humidity, and air velocity at spots around 

occupants. Therefore, using the proposed control setup does not have 

to change interior devices of existing air conditioners. 
To evaluate thermal comfort, most of researches have used 

predicted mean vote (PMV) model as the thermal comfort index and 

PMV is also adopted by ISO 7730. PMV takes into account six 

parameters, namely, metabolic rate, clothing insulation, air 

temperature, mean radiant temperature, air velocity, and humidity. 

According to these parameters, PMV values represent the extent of 

thermal sensation. Since the temperature is the primary variable in 

controlling air conditioners, an inverse PMV model is developed in 

this study to determine the thermal comfort temperature dealing with 

desired PMV values and in-door conditions. However, the inverse 

PMV model is a nonlinear and multivariable model and it is not easy 

to find the analytical solution of the inverse PMV model. Artificial 

intelligence strategies such as fuzzy systems, evolutionary algorithms, 

particle swarm algorithms ,neural networks or the ombination of the 

above strategies are useful for modeling nonlinear characteristic and 

solving complicated problems. Particle swarm algorithms are inspired by 

a bird flock and are used to search solutions for complex problems 

iteratively. Particle swarm algorithms have features of fast searching 

optimal solutions and easy implementation. An adaptive neurofuzzy 

inference system (ANFIS) was presented to approximate nonlinear 

functions. Compared with particle swarm algorithms, the ANFIS 

algorithm is more complex. How-ever, after training ANFIS can be 

conducted in real time without iterative computation. 
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II. INVERSE PMV MODEL 

 
 

The inverse PMV model is utilized to generate the desired tem

perature set point for controllers according to the desired PMV, 

environments, and human factors. However, the inverse PMV mode 

is a multivariable nonlinear model and it is difficult to fi nd an 

analytical solution. In order to solve the problem, ANFIS and particle 

swarm algorithms, which belong to artificial intelligence approaches, 

are adopted and their results are discussed. 
 
A. Predicted Mean Vote in Thermal Comfort Model 
 

The thermal comfort PMV model was proposed by Fanger  and is 

used to predict the mean thermal comfort response. Fanger’s PMV 

model establishes the relation between the thermal load on the body 

and the statistical thermal sensation obtained from numerous people. 

The thermal load on the body varies with personal factors and envi

ronment factors. The personal factors consist of activity and clothing 

insulation. The environment factors comprise temperature, humidity, 

air velocity, and mean radiant temperature. The PMV value is calcu

lated by using 
 

 
where  denotes the metabolism (W/m  ), and  is the human load of 

the body, defined as the difference between the heat production and the 

heat loss to the environment [17]. The human load is computed by

 
 
 

 
The convection heat transfer coefficient  is estimated by

 
 
 
 

 
and the surface temperature  of clothing is determined by

 
 =35.7-0.028(M-W)-0.155Icl{3.96 x10

[(tcl+273)4+(tmrt+273)
4
]+fclxhc(tcl

   
 

 

Experiments were carried out in an office in summer. The metabolic
rate and the clothing insulation of people are difficult to measure in real 

time. In general, the values of the metabolism and the clothing in

are assumed as constants. The metabolic rate is assumed as 60 W/m

the office activity and the clothing insulation is assumed
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TABLE I 

THERMAL SENSATION SCALE OF

The inverse PMV model is utilized to generate the desired tem-

to the desired PMV, 

environments, and human factors. However, the inverse PMV mode 

is a multivariable nonlinear model and it is difficult to fi nd an 

analytical solution. In order to solve the problem, ANFIS and particle 

rtificial intelligence approaches, 

 

The thermal comfort PMV model was proposed by Fanger  and is 

used to predict the mean thermal comfort response. Fanger’s PMV 

model establishes the relation between the thermal load on the body 

and the statistical thermal sensation obtained from numerous people. 

The thermal load on the body varies with personal factors and envi-

ivity and clothing 

insulation. The environment factors comprise temperature, humidity, 

air velocity, and mean radiant temperature. The PMV value is calcu-
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heat loss to the environment [17]. The human load is computed by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1.ANFIS architecture with two rules and two inputs.

 

 
as 0.57 clo for short-sleeved shirt with trousers. In some research, the 

mean radiant temperature was assumed to equal the air temperature due 

to the requirement of multiple sensors and the difficulty of measurement . 

Thus, the above assumptions are used in both s

model and evaluating the PMV value in this study.

(2) 

is estimated by 
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of clothing is determined by 

0.155Icl{3.96 x10
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xfcl 
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Experiments were carried out in an office in summer. The metabolic 
 

difficult to measure in real 

time. In general, the values of the metabolism and the clothing in-sulation 

are assumed as constants. The metabolic rate is assumed as 60 W/m  for 

the office activity and the clothing insulation is assumed 

 
B. ANFIS for Inverse PMV 
 

ANFIS belongs to a neurofuzzy system . ANFIS can deal with 

nonlinear behavior and create inverse models through input/output 

data. Based on the input–output data, the learning capability of neural 

networks is used to tune membership functions 

conse-quent parameters in fuzzy models. The ANFIS architecture is 

depicted in Fig. 1. 
The ANFIS model for modeling the inverse PMV model is con

structed in this study by using a Sugeno fuzzy model . To implement 

the ANFIS model, first of all, the training data are generated from the 

PMV model. Initial values of parameters in the ANFIS model are in 

turn guessed. Finally, one applies an offline training technique to tune 

the ANFIS parameters until meeting requirements of the error 

tolerance. 
Fig. 2 shows the absolute thermal comfort temperature error 

between the ANFIS output and the inverse PMV data. It can be 

observed that the maximum absolute error is less than 0.015

which is sufficiently small for temperature control.

 
C. Particle Swarm Algorithm for Inverse PMV
 

In a particle swarm, each moving particle in a swarm is treated as a 

potential solution. Each particle has memory functions, and it can 

mem-orize its current own best position and group’s best position

Like bird flocking, each bird adjusts its position according to its own 

informa-tion and group information. 
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Fig. 1.ANFIS architecture with two rules and two inputs. 

sleeved shirt with trousers. In some research, the 

mean radiant temperature was assumed to equal the air temperature due 

to the requirement of multiple sensors and the difficulty of measurement . 

Thus, the above assumptions are used in both solving the inverse PMV 

model and evaluating the PMV value in this study. 

ANFIS belongs to a neurofuzzy system . ANFIS can deal with 

nonlinear behavior and create inverse models through input/output 

output data, the learning capability of neural 

networks is used to tune membership functions parameters and 

quent parameters in fuzzy models. The ANFIS architecture is 

The ANFIS model for modeling the inverse PMV model is con-

structed in this study by using a Sugeno fuzzy model . To implement 

, the training data are generated from the 

PMV model. Initial values of parameters in the ANFIS model are in 

turn guessed. Finally, one applies an offline training technique to tune 

the ANFIS parameters until meeting requirements of the error 

g. 2 shows the absolute thermal comfort temperature error 

between the ANFIS output and the inverse PMV data. It can be 

observed that the maximum absolute error is less than 0.015  C, 

which is sufficiently small for temperature control. 

lgorithm for Inverse PMV 

In a particle swarm, each moving particle in a swarm is treated as a 

potential solution. Each particle has memory functions, and it can 

orize its current own best position and group’s best position. 

Like bird flocking, each bird adjusts its position according to its own 

tion and group information. 
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Fig. 2.Absolute temperature error between ANFIS and inverse PMV data under 

various PMV and relative humidity given 

 m/s, and 

 
 
where  and  are the next velocity and the current velocity 

of individual  , respectively;  is the current position of individual 

 and  denote the individual best position of individual 

 and the global best position, respectively;  represents the 

weight that pushes the particle towards 

acceleration weight that pushes the particle towards 

are uniformly distributed random numbers in the range 

inertia weight. To balance global search and local search, a linearly de

ceasing inertia weight is used and described as 

 
where  and  are the maximum and minimum values of 

the inertia weight, respectively;  is the number of the current 

iteration;  is the number of maximum iteration.

The position of each particle is limited in the range 

and represented as 
 

 
In the present particle swarm algorithm, 

, the number of particles are 40, and the maximum number 

of iterations is 30. The fitness value is the absolute error between the 

desired PMV and the PMV calculated by a candidate solution.

 
The metabolic rate is prescribed as 60 W/m  and the clothing insu

lation 0.57 clo. The computational time is less than 1.4 s. Fig. 3 shows 

temperature errors between the algorithm result and actual value. The 

results show that the maximum error is less than  
particle swarm algorithm is more accurate than ANFIS, as depicted in 

Table II. Particle swarm algorithms have to calculate iteratively while

a well-trained ANFIS calculates the desired temperature directly 

without the need of iteration. 
 

III. CONTROL METHODS 
 

In order to maintain building occupants’ thermal co
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Fig.  3.  Absolute temperature  error  of  the  particle  swarm

 

 

TABLE II 
COMPARISON BETWEEN ANFIS AND PARTICLE

(6) A. Feedforward–Feedback Control  

are the maximum and minimum values of 

is the number of the current 

ration. 
The position of each particle is limited in the range  

(7) 

, the number of particles are 40, and the maximum number 

is the absolute error between the 

desired PMV and the PMV calculated by a candidate solution. 

and the clothing insu-

lation 0.57 clo. The computational time is less than 1.4 s. Fig. 3 shows 

between the algorithm result and actual value. The 

 C. The 
particle swarm algorithm is more accurate than ANFIS, as depicted in 

Table II. Particle swarm algorithms have to calculate iteratively while 

trained ANFIS calculates the desired temperature directly 

 
Fig. 4 depicts the control block diagram of feedforward

control. The overall control action that determines the temperature 

set-ting equals the sum of the feedforward control output and the 

feedback control output. The feedforward control simply serves to 

generate a thermal comfort temperature setting. It is desired that the 

output value in feedforward control is the same as th

comfort temperature evaluated by an inverse PMV model. Therefore, 

the gain of the feed-forward controller is prescribed as 1. However, 

the temperature sensor that has been embedded in air conditioners 

cannot reflect the temper-ature at spots arou

the feedback controller is responsible for automatically adjusting the 

indoor temperature, com-pensating the difference between the 

temperature measured by wire-less sensor network around occupants 

and the temperature sensed by the air conditioners, and preventing the 

temperature around occupants from overcooling or overheating. In 

this study, fuzzy control and Pro-portional

control are respectively adopted as the feedback controller.
 
B. PID Controller 
 

A PID controller is the most commonly used feedback controller in 

industrial processes. Because the control algorithm is implemented 

by a computer, the PID controller is written in discrete form 

l comfort and avoid  
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ARTICLE SWARM ALGORITHM 

Fig. 4 depicts the control block diagram of feedforward–feedback 

control. The overall control action that determines the temperature 

ting equals the sum of the feedforward control output and the 

feedback control output. The feedforward control simply serves to 

generate a thermal comfort temperature setting. It is desired that the 

output value in feedforward control is the same as the thermal 

comfort temperature evaluated by an inverse PMV model. Therefore, 

forward controller is prescribed as 1. However, 

the temperature sensor that has been embedded in air conditioners 

ature at spots around occupants. Therefore, 

the feedback controller is responsible for automatically adjusting the 

pensating the difference between the 

less sensor network around occupants 

air conditioners, and preventing the 

temperature around occupants from overcooling or overheating. In 

portional-Integral-Derivative (PID) 

control are respectively adopted as the feedback controller. 

PID controller is the most commonly used feedback controller in 

industrial processes. Because the control algorithm is implemented 

by a computer, the PID controller is written in discrete form 
(8) 
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Fig. 4.  Control block diagram of inverse PMV model with feedforward

 
In this study, input variables are the temperature error (E) and the 

temperature error change (CE). The difference between the desired 

and the indoor measured temperatures is E. The CE is computed by 

, where e(n) is the current temperature e

 is the previous temperature error and T is the sampling time. The 

output variable is the temperature change in temperature setting.
 
D. Digital Self-Tuning Control 
 

A digital self-tuning controller belongs to an adaptive controller 

and is suitable for time-varying system or a system whose parameters 

are not completely known . 
A regression model is employed in this study for self

troller designs and the model is expressed as 
                   y(k)=ɵ^T(k)ɸ(k-1)+n(k)                                           (9)            

where y(k) is the plant output at the k sample interval,n(k) is the 

nonmeasurable random component,ɵ^T(k) is the parameter vector 

described as ɵ^T(K)=[a1,a2,…..ana,b1,b22….bnb,d1,d2…dn], and 

is the regression vector. 

In order to monitor slow changes in the parameters of the identified 

process, the technique of adaptive directional forgetting is used. The 

parameter vector can be estimated when minimizing the criterion
 

 
where  is the initial identifi cation time, 

directional forgetting factor, and 

prediction error. According to a recursive approach [22], the 

parameter vector is computed by 
 

 
where  is an auxiliary scalar 

and  is a rectangular covariance matrix. If 

is computed by the recurrent algorithm  
        c(k)=c(k-1)-c(k-1)ɸ(k-1)ɸ^T(k-1)c(k

Ɛ^-1(k-1)+ʆ(k-1) 
 
 
Where 

1-Ψ(k)   (13) 
Ɛ(k-1)=Ψ(k)- ʆ(k-1)_______ 
 
 
 
The value of adaptive forgetting factor is updated by the relation
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Fig. 4.  Control block diagram of inverse PMV model with feedforward–feedback control. 

In this study, input variables are the temperature error (E) and the 

temperature error change (CE). The difference between the desired 

and the indoor measured temperatures is E. The CE is computed by 

, where e(n) is the current temperature error, 

is the previous temperature error and T is the sampling time. The 

output variable is the temperature change in temperature setting. 

tuning controller belongs to an adaptive controller 

varying system or a system whose parameters 

A regression model is employed in this study for self-tuning con-

1)+n(k)                                           (9)            

where y(k) is the plant output at the k sample interval,n(k) is the 

^T(k) is the parameter vector 

nb,d1,d2…dn], and ɸ(k-1) 

In order to monitor slow changes in the parameters of the identified 

process, the technique of adaptive directional forgetting is used. The 

parameter vector can be estimated when minimizing the criterion 

(10) 

 is the adaptive 

 is the 

prediction error. According to a recursive approach [22], the 

(11) 

is an auxiliary scalar 

, then  

1)c(k-1)     (12) 

The value of adaptive forgetting factor is updated by the relation 

Ψ(k)={1+(1+ρ)[ln(1+ʆ(k-1))]                      (14)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5. Photo of a room employed for experiments. The red circle indicates the 

place where a ZigBee module is located. 

 

ɲ(k)=Ɛ^2(k)/λ(k)                                                  (15)

 
in this study.  

Takahashi’s PID controller [22] is employed in experiments of the 

digital self-tuning control 
 

 

 
 

  

 
IV. EXPERIMENTAL SETUP 

The room size of the office selected for executing experiments is 6 

m in length, 5.8 m in width, and 2.8 m in height. The photo of the 

room is shown in Fig. 5. Furthermore, there are three people in the 

room when performing experiments. A unitary air conditioner with a 

nominal cooling capacity of 7.3 kW is employed for experiments. 
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Takahashi’s PID controller [22] is employed in experiments of the 
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ETUP 

The room size of the office selected for executing experiments is 6 

m in length, 5.8 m in width, and 2.8 m in height. The photo of the 

room is shown in Fig. 5. Furthermore, there are three people in the 

experiments. A unitary air conditioner with a 

nominal cooling capacity of 7.3 kW is employed for experiments. 
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Fig. 6.  Signal transmission among devices in the wireless control network. 
 
use a ZigBee module including an infrared emitter for air conditioner 

remote control and environment sensors that can measure temperature, 

humidity, air velocity, illuminance, and CO  concentration. In addition, 

the real-time environment information can be displayed on the monitor in 

the ZigBee module. However, only the temperature, air velocity, and 

humidity functions are employed for thermal comfort control in this 

study. The ZigBee module is placed on the desk around occupants and 

located at the red circle shown in Fig. 5.  
Fig. 6 depicts signal transmission among devices in the overall wire-

less network. And it has two coordinators: one is USB-type coordinator 

and it is connected to the ZigBee measurement and control module, and 

the other is connected to other devices including wattmeter of the air 

conditioner, lightings, and printer, and other devices. 

 
 
 
Fig. 7.Measured PMV responses of the conventional method, the inverse PMV 

model with feedforward-fuzzy feedback control and self-tuning control. 

 
TABLE III 

COMPARISON OF MEASURED PMV PERFORMANCES IN  
FOUR CONTROL METHODS 
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V. EXPERIMENTAL RESULTS 

 
Experiments were performed for four control methods in Taiwan, where the climate is a hot and subtropical humid. The first control method 

is the conventional method, i.e., fixed temperature setting at 26  C. The other three control methods belong to the inverse PMV model with 

the feedforward-fuzzy feedback control, with feedfor-ward-PID feedback control, and with digital self-tuning control. The air conditioner is 

operated to track the thermal comfort temperature by the last three controllers. The inverse PMV model computes thermal comfort temperature 

in real time based on the desired PMV, measured air velocity, and humidity. In order to ensure PMV in the range of  and reduce 

energy consumption, this study prescribes the PMV input in the inverse PMV model depicted in Fig. 4 as 0.25 in the summer, during which 

experiments were conducted for 4.5 hours. By contrast, in the winter the PMV input of  is suggested due to energy saving consideration.  
Performances of the four methods are compared based on PMV re-sponse curves shown in Fig. 7. The PMV value of the conventional 

method changes more severely than the other three controllers. Ac-cording to Fig. 7, the PMV values of the three nonconventional con-trollers 

maintain between 0 and 0.5. The three perform better than the conventional method because the inverse PMV model can real time generate 

proper comfort temperatures, which are in turn continuously tracked by each of three controllers. Furthermore, according to the measured 

indoor temperature around occupants and the thermal com-fort temperature, the three nonconventional controllers appropriately change the 

temperature setting in the air conditioner, which is equiva-lent to adjusting cooling capacities at any time.  
Table III compares performances among control methods. The per-centage of the period lying within PMV  is defined as the ratio 

of periods during which the PMV value lies within  
to the total time from the time at which the PMV first enters within  to the end time. The percentages of periods lying within PMV 

 of the inverse PMV model with the three noncon-  
ventional controllers are larger than the conventional one. And the stan-dard deviations of the three are smaller than the conventional method. The 

inverse PMV model with these three controllers can better satisfy 
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thermal comfort and yields smaller variation of PMV than the conven-tional method.  

Among these three controllers, the feedforward-fuzzy feedback controller has the largest percentage of periods lying within PMV 

 and the smallest variation of PMV than the other con-trollers. Comparing between the feedforward - PID feedback controller and the digital 

self-tuning controller.Table III shows that the dig-ital self-tuning controller performs better than the feedforward-PID feedback controller in 

terms of the percentage of the period lying within PMV  and the PMV variation. Table III also shows that the effective tuning of the 

self-tuning control parameters results in better control performance than the feedforward-PID feedback controller. Furthermore, among these 

controllers, the average PMV of the digital self-tuning controller is closest to the PMV input than the other controllers.  
Table IV compares the energy consumptions among the four methods. The energy saving is calculated according to 

According to Table IV, the inverse PMV model with feedforward-fuzzy feedforward-PID or with digital self-

tuning con-trol indeed outperform the conventional method by 34.7%, 37.3%, and 32.9%, respectively, in energy 

saving. The inverse PMV model with the feedforward-fuzzy feedback control saves the most energy among the 

three methods. 
 
 

TABLE IV 
COMPARISON OF MEASURED ENERGY CONSUMPTION AND  

ADVANTAGES AMONG FOUR CONTROL METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. CONCLUSION 
 

Experiments have been carried out by using four control methods. As 

shown in Fig. 7, PMV response curves of every controller fluctu-ates due 

to 1  C increment of air-conditioner temperature commands. Therefore, 

it remains to develop methods and devices to maintain PMV near 0 and 

smooth responses while saving energy. In addition, since the comfort 

range of PMV may vary with different people’s feeling, it may be 

required to modify the comfort range of PMV according to the ques-

tionnaire of occupants’ preference or develop other thermal comfort in-

dices for occupants. In this study, the values of the metabolic rates and 

the clothing insulation are assumed as constants and are estimated from 

tables in [17]. For accurate estimation, the clothing insulation can be 

determined by measurement on heated mannequins, and the metabolic 

rates can be estimated from measuring CO  and O  in a person’s ex-

pired air [17]. Moreover, human activity changes with time. However, 

estimating metabolic rates and clothing insulation is not trivial. There-

fore, it is desired in future work to devise wearable or non-contact sen-

sors to measure the values of metabolic rates and clothing insulation and 

improve the human factor measurement process. 
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