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 Abstract— Goal: The presence of 

microcalcification clusters is a primary sign of breast 

cancer; however, it is difficult and time consuming for 

radiologists to classify microcalcifications as malignant 

or benign. In this paper, a novel method for the 

classification of microcalcification clusters in 

mammograms is proposed. Methods:The 

topology/connectivity of individual microcalcifications is 

analyzed within a cluster using multiscale morphology. 

This is distinct from existing approaches that tend to 

concentrate on the morphology of individual 

microcalcifications and/or global (statistical) cluster 

features. A set of microcalcification graphs are 

generated to represent the topological structure of 

microcalcification clusters at different scales. 

Subsequently, graph theoretical features are extracted, 

which constitute the topological feature space 

formodeling and 

classifyingmicrocalcificationclusters.Artificial Neural 

Networkbased classifiers are employed for classifying 

microcalcification clusters. Results:The validity of the 

proposed method is evaluated using two well-known 

digitized datasets (MIAS and DDSM) and a full-field 

digital dataset. High classification accuracies (up to 

96%) and good ROC results (area under the ROC 

curve up to 0.96) are achieved. A full comparison with 

related publications is provided, which includes a direct 

comparison. Conclusion:The results indicate that the 

proposed approach is able to outperform the current 

state-of-the-art methods. Significance: This study shows 

that topology modeling is an important tool for 

microcalcification analysis not only because of the 

improved classification accuracy but also because the 

topological measures can be linked to clinical 

understanding. 

Index Terms—Classification, graphs, mammography, 

microcalcifications,topology. 

 

 

 

 

 

INTRODUCTION 

BREAST cancer is currently the most common 

cancer affecting women worldwide [1]. In European 

women, it is the leading cause of cancer death, 

causing one in six of all deaths from cancers [2].In 

the U.S., a woman has a 12.15% (about one in eight) 

risk of developing breast cancer during her 

lifetime[3]. 

Mammography is one of the most reliable and 

effective methods for detecting breast cancer at it 

earlystages [4]. In developed countries, population-

based mammography screening programs have been 

implemented [1]. Women are encouraged to 

participatein regular breast examinations through 

mammography. In the U.S., annual mammographic 

screening is recommended for women at normal risk, 

beginning at age 40 [5]. In the U.K., women aged 

between 50 and 70 years are invited for breast 

screening every three years [6]. 

CHARACTERIZING THE CLUSTERED 

MAMMOGRAPHIC MICROCALCIFICATIONS 

USING ARTIFICIAL NEURAL NETWORK 
Karthika A

1
, Dr.S.Kavitha

2 

1
ME-Applied Electronics,

2
PROFESSOR &DEAN/ECE

 

Nandha Engineering College,Erode-52. 

 



                                                                                                ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 

             Vol. 3, Special Issue 24, April 2016  

 

2 

All Rights Reserved © 2016 IJARTET 

 

Microcalcifications are small deposits of calcium 

salts within breast tissue that appear as small bright 

spots in mammograms [7]–[10]. The presence of 

microcalcification clusters is a primary sign of breast 

cancer. The radiological definition of a 

microcalcification cluster is an area of 1 cm2 that 

contains, in general, no fewer than three 

microcalcifications [10], [11]. The spatial resolution 

of mammography is very high (normally inthe range 

of 40–100 µmper pixel), and therefore, 

mammography enables the detection of 

microcalcifications at an early stage. However, not all 

microcalcification clusters necessarily indicate the 

presence of cancer, only certain kinds of 

microcalcificationsare associated with a high 

probability of malignancy [12], [13]. The first 

column  

of Fig. 1 shows two mammographic image patches 

taken from the Mammographic Image Analysis 

Society (MIAS) database [14], containing a 

malignant microcalcificationcluster and a benign 

microcalcification cluster, respectively. In clinical 

practice, it is difficult and time consuming for 

radiologists to distinguish malignant from 

benignmicrocalcifications. This results in a high rate 

of unnecessary biopsy examinations [9], [11]. In 

order to improve the diagnostic accuracy of 

radiologists interpreting microcalcifications in 

mammograms, computer-aided diagnosis (CAD) 

systems haveBeen applied to reduce the false positive 

rate (FPR) while maintaining sensitivity [9], [15]. 

    Many methods for CAD of microcalcifications in 

mammograms have been proposed [9], [17]. A 

variety of features have been studied in the literature 

to characterize microcalcifications and classify these 

abnormalities into malignant and benign, such as 

shape, morphological, cluster, intensity-based, and 

texture features [9], [17]. Early research showed how 

the morphological characteristics of 

microcalcifications could be used to 

differentiatebetween malignant and benign cases 

[18]. The shapeand morphological features are 

mainly extracted from individual microcalcifications 

and describe the morphological characteristics of 

individual microcalcifications, such as roughness, 

size, and shape [7], [10], [19]–[21]. Complementary 

to the shape and morphological features, cluster 

features concentrate on the global properties of 

microcalcification clusters [8], [15], [20], [22]–[25]. 

Some were used to describe the morphology of 

microcalcification clusters, such as cluster area, 

cluster perimeter,cluster diameter, cluster circularity, 

cluster eccentricity, and cluster elongation. Others 

were intended to capture the spatial distribution of 

individual microcalcifications within a cluster, such 

as average and standard deviation of distances 
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between microcalcifications. In addition, a novel 

model-based method was presented to reconstruct 

and analyze microcalcification clusters in 3-D from 

two mammographic views [26]. 

    Although a broad variety of techniques for CAD of 

breast cancer have been developed in the past two 

decades, some of which have achieved a high 

sensitivity and specificity for specific abnormalities, 

the automatic and accurate classification of 

microcalcification abnormalities as malignant or 

benign remains a challenge due to their inherent 

nature; furthermore, most of the existing approaches 

have their own specific disadvantages. First, for the 

approaches based on the shape/morphology of 

individual microcalcifications [7], [10], informative 

features cannot be attained when microcalcifications 

are very small (occupying only a few pixels) so that it 

seems meaningless to analyze the 

shape/morphological properties of such small objects. 

Second, microcalcifications may have very low 

contrast with respect to the surrounding tissue 

especially when microcalcifications form within 

dense tissue which has high and homogeneous 

intensity. As such, the lack of useful texture 

information within the background region affects the 

capability of the approaches based on the intensity 

variations and texture features [8], [27]. In addition, 

for the approaches describing the spatial distribution 

of microcalcifications within a cluster, the global 

cluster 

Features were computed based on a fixed resolution, 

and the distance-based features rely on the original 

spatial resolution of mammography. This results in a 

lack of robustness and adaptiveness to different 

spatial resolutions of mammograms in particular 

screen-film mammograms acquired by different 

digitizers 

    According to some studies on the evaluation of 

breast microcalcifications, malignant 

microcalcifications tend to be small, numerous (>5 
per focus within 1 cm2 ) and densely distributed 

because they lie within the milk ducts and associated 

structures in the breast and followthe ductal anatomy 

[12], [13], [28].However, benign microcalcifications 

are generally larger, smaller in number (<4 −5 per 1 

cm2 ) and more diffusely distributed as these 

microcalcifications arise within the breast stroma, 

benign cysts or benign masses [12], [13], [28]. These 

differences result in variations in the distribution and 

closeness of microcalcifications within the clusters 

and provide radiologists with information which 

enables decisions regarding the need for further 

assessment and possible breast biopsy. Hence, we 

propose a novel method for modeling and classifying 

microcalcification clusters in mammograms based on 

their topological properties. The topology of 

microcalcification clusters is analyzed at multiple 

scales using a graph-based representation of their 

topological structure. This method is distinct from 

existing approaches that mainly concentrate on the 

morphology of individual microcalcifications and 

only compute the distance-based cluster features at a 

fixed scale. In this method, a set of topological 

features are extracted from microcalcification graphs 

at multiple scales, and a multiscale topological 

feature vector is subsequently generated to 

discriminate between malignant and benign cases. 

    A preliminary version of this study has been 

reported in [29], where the idea of analyzing 

microcalcification clusters using their topological 

structure is initially investigated based on a small 

number of cases. In this paper, the evaluation has 

been 

extended by including additional data (from several 

databases). We have also investigated the effect of 

variation in microcalcification segmentation, the 

dataset size, the individual significance of eight graph 

metrics for malignancy diagnosis, and a direct 

comparison with state-of-the art methods. 

 

II. DATA 

    The data used in the experiments consist of three 

datasets, which are composed of image patches of 

different cases (taken from different mammograms). 

The first dataset was taken from he MIAS database 

[14], containing 20 image patches with the same size 

of 512 × 512 pixels. The mammograms were 

digitized to 50 µm per pixel with a linear optical 

density in the range 0–3.2. The second dataset was 

extracted from the digital database for screening 

mammography (DDSM) database [30], containing 

300 image patches with varied sizes (the average size 

of these image patches is 482 × 450 pixels). The 

mammograms in the DDSM database were digitized 

by one of four different scanners: DBA M2100 

ImageClear (42 µm per pixel, 16 bits), Howtek 960 

(43.5 µm per pixel, 12 bits), Lumisys 200 Laser (50 

µm per pixel, 12 bits), and Howtek MultiRad850 

(43.5 µm per pixel, 12 bits). In contrast to the first 

two datasets, the third dataset contains 25 full-field 

digital image patches extracted from a nonpublic 

mammographic database. These mammograms were 

acquired using a HologicSelenia mammography unit, 

with a resolution of 70 µm per pixel and a depth of 12 

bits. The size of these image patches also varies and 
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the average size is 352 × 301 pixels. In this study, 

all microcalcifications in each image patch are 

considered to be part of a single microcalcification 

cluster. The diagnostic gold standard (benign or 

malignant) of all microcalcification clusters in this 

study has been provided by biopsy: there are nine 

malignant and 11 benign clusters in the MIAS 

dataset, 141 malignant and 159 benign clusters in the 

DDSM dataset, and 14 malignant and 11 benign 

clusters in the Digital dataset, respectively. 

The proposed method works on binary images where 

0s stand for “normal” tissue and 1s represent 

microcalcifications that can be automatically detected 

by an automatic detection approach or manually 

annotated by experts. The approach developed 

byOliver et al. [16] for automatic detection of 

microcalcificationsis applied to the three datasets (the 

original work by Oliver et al. [16] showed better 

results for digital data when compared to digitized 

data). For the MIAS dataset, in addition to automatic 

detection, the exact location of individual 

microcalcificationswas manually annotated by an 

expert (each microcalcificationin every image patch 

was labeled and segmented from the surrounding 

tissue). The manual annotations and the automatic 

detection results of the example 

microcalcificationclusters areshown in the second 

and third columns of Fig. 1, respectively. It appears 

that the automatic detection approach tends to 

undersegment individual  

microcalcifications, such that the pixels close to the 

boundaries of individual microcalcifications are lost. 

III. METHODOLOGY 

    We propose to investigate the potential correlation 

between the topology of microcalcification clusters 

and their pathological type. We construct a series of 

microcalcification graphs to describe the topological 

structure of microcalcification clusters at different 

scales. A set of graph theoretical features are 

extracted from these graphs for modeling and 

classifying microcalcification clusters. The proposed 

methodology consists of four main phases: estimating 

the connectivity between microcalcifications within a 

cluster using morphological dilation at multiple 

scales; generating a microcalcification graph at each 

scale based on the spatial connectivity relationship 

between 

microcalcifications; extracting multiscale topological 

features from these microcalcification graphs; and 

using the extracted features to build classifier models 

of malignant and benign microcalcification clusters. 

The framework of our methodology is summarized in 

Fig. 2. All image analysis development work was 

done within MATLAB 7.8.0. 

A. Connectivity Estimation Using Morphological 

Dilation 

    Morphological dilation [31] is performed on each 
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individual microcalcification using a disk-shaped 

structuring element at multiple scales. Here, the scale 

corresponds to the radius of the structuring element 

measured in pixels. The effect of multiscale 

morphological dilation on a microcalcification cluster 

is shown in Fig. 2. It can be seen that the multiscale 

morphological dilation continuously absorbs 

neighboring pixels into individual microcalcifications 

resulting in a change in the connectivity between 

microcalcifications within the cluster. To illustrate 

the connectivity of microcalcification clusters with 

respect to malignant and benign cases, the 

morphological dilation results of the two example 

microcalcification clusters are shown in thefourth 

column of Fig. 1, where the radius of the structuring 

element is equal to 6 pixels (i.e., scale = 6). The 

boundaries of dilated microcalcifications are 

displayed using different colors and each individual 

microcalcification is labeled with a sequential 

number which is ordered according to the spatial 

location of the corresponding microcalcification in 

the image patch. As indicated in Section I, the 

malignant cluster contains a larger number of 

microcalcifications that are located more closely 

together within the cluster, while the benign cluster 

contains fewer microcalcifications that aremore 

diffusely distributedwithin the cluster. 

B. Microcalcification Graph Generation 

    We propose to represent the topology of 

microcalcification clusters in graph form. A 

microcalcification graph is generated based on the 

spatial connectivity relationship between 

microcalcifications within a cluster. In a 

microcalcification graph, each node represents an 

individual microcalcification, and an edge between 

two nodes is created if the two corresponding 

microcalcifications are connected or overlap in the 2-

D image plane. The resulting microcalcification 

graphs corresponding to the two example 

nmicrocalcification clusters in Fig. 1 are shown in 

Fig. 3.The node locations in these two graphs are in 

accordance with the original spatial distribution of 

microcalcifications within the two clusters, and the 

node sequences are consistent with those in Fig. 1, 

which are sorted in a left-to-right and bottom-to-top 

direction (but alternative directions provide the same 

performance for the subsequent processing). As 

shown in Fig. 3, the connectivity of the 

microcalcification cluster increases from small to 

large scales and the corresponding microcalcification 

graph becomes denser and denser (more and more 
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edges are created in 

the graph). 

C. Multiscale Topological Feature Extraction 

After generating microcalcification graphs over a 

range of scales, a set of graph theoretical features can 

be extracted to capture the topological properties of 

microcalcification clusters. These features will 

constitute the feature space for the classification of 

malignant and benign clusters. Before extracting the 

topological features of microcalcification clusters, we 

first provide the following definitions for general 

graphs. Further definitions for graphs can be found in 

[32]. Here, we use G(V,E) to represent a graph, where 

V is the vertex set and E is the edge set, and use |V | 

(the cardinality of V ) and |E| (the cardinality of E) to 

denote the number of vertices and the number of 

edges in G, respectively. Gconndenotes the subgraph 

of G that corresponds to the largest connected 

component. 

    Definition 1: The adjacency matrix A(i, j) of a 

graph 

G(V,E) is a |V | × |V | matrix, defined as 

 

 

 

Where (i, j) ∈E indicates (i, j) is an edge, i.e., there 

is an edge between vertex i and vertex j in G. 

    Definition 2: The degree matrix D(i, j) of a graph 

G(V,E) is a |V | × |V | diagonal matrix containing 

the degree of vertex I at entry (i, i), defined as 

 

 
 
Definition 3: The Laplacian matrix of a graph 

G(V,E), denoted by L(i, j), is defined as the 

difference between the degreematrix and the 

adjacency matrix, given by 

 
Definition 4: The normalized Laplacian matrix of a 

graphG(V,E), denoted by L(i, j), is defined as the 

normalized version of the Laplacian matrix of G, 

given by 
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According to the above definitions, the normalized 

Laplacianmatrix of G can also be given by 

 
with the convention that D−1 (i, i) = 0 if d(i) = 0 (i.e., 

D(i, i) = 0), where I is the |V | × |V | identity matrix. 

It should be noted that L is a symmetric positive 

semidefinite matrix and all eigenvalues of L are real 

and nonnegative. In addition, it can be seen from (5) 

that the eigenvalues of L are all between 0 and 2, 

which are closely related to many structural 

properties for general graphs and play an important 

role in spectral graph theory [33]. The multiplicity of 

the eigenvalue 0, denoted for ease of notation as k, 

corresponds to the number of connected components 

in the graph, and the multiplicity of the eigenvalue 2 

coincides with the number of bipartite connected 

components in the graph. 

Definition 5: The distance between two vertices i and 

j in agraph G(V,E), denoted by dist(i, j), is defined as 

the length of the shortest path between i and j, equal 

to the minimum number of edges between them. 

    Following these definitions, we explain a set of 

graph metrics in Table I that will be extracted from 

the generated microcalcification graphs and 

concatenated into the feature set for the subsequent 

classification process. 

We construct a set of microcalcification graphs based 

on thespatial connectivity relationship between 

microcalcifications after performing morphological 

dilation at multiple scales, denoted by G = G0,G1, . . 

. , GS−1 , where S is the number of scales, and Gs(s = 

0, 1, . . . , S − 1) denotes the microcalcificationgraph 

generated at the sth scale (the 0th scale corresponds 

to the initial microcalcification cluster without 

morphological dilation).We extract the eight graph 

metrics from each graph in G, which produces eight 

graph feature sets covering S scales. We then 

concatenate the eight feature sets to create a feature 

vector, termed the multiscale topological feature 

vector in this paper, representing the topological 

characteristics of microcalcificationclusters over 

multiple scales. 

    The resulting eight graph feature sets for the 

example malignant and benign microcalcification 

clusters in Fig. 1 are shown in Fig. 4, where the graph 
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metrics are extracted from the microcalcification 

graphs generated at 65 scales, i.e., G = G0,G1, . . . , 

G64 (S = 65). It can be seen from Fig. 4(a) that the 

number of sub graphs corresponding to the malignant 

cluster is larger than the benign cluster at the first few 

scales, while it decreases more drastically as the scale 

increases due to the fact that malignant 

microcalcifications are more densely distributed. 

When the scale increases to a certain value, the 

number of subgraphsremains stable and further 

decreases to 1 when all microcalcificationsin the 

cluster get connected after morphological dilation. As 

shown in Fig. 4(b), the average vertex degree goes up 

continuously as the scale increases. The maximum 

average vertex degree is achieved when a complete 

microcalcificationgraph is formed, in which case all 

microcalcifications within the cluster are connected 

with each other. Moreover, it is shown in Fig. 4(b) 

that the average vertex degree values of the 

malignant cluster are larger than those of the benign 

cluster over 

the entire range of scales, which indicates that the 

malignant microcalcification cluster is more 

connected. Fig. 4(c) shows a set of values of the 

maximum vertex degree against scale which also 

have an increasing trend from small to large scales 

and tend 

toward stability when reaching the maximum value. 

Similarly, as indicated by the average vertex degree, 

the maximum vertex degree values for the malignant 

cluster are also larger than those of the benign 

cluster. The resulting values of the average vertex 

eccentricity against scale are plotted in Fig. 4(d). At 

the first few scales, most microcalcifications are 

isolated from others in the cluster, which results in 

small average eccentricity values (the eccentricity of 

isolated vertices is set to 0). When the scale increases 

to a  

specific value, the maximum average eccentricity is 

obtained, in which case the previously isolated 

microcalcifications are absorbed into a connected 

component with a relatively large diameter. After 

that, as the scale further increases, more and more 

microcalcifications get connected and the average 

vertex eccentricity starts to decrease. When all 

microcalcifications in the cluster are connected with 

each other, the average eccentricity is reduced to 1. 

Fig. 4(e) shows how the diameter (the maximum 

vertex eccentricity) of the malignant and benign 

clusters changes against scale, which is similar to that 

of the average vertex eccentricity in Fig. 4(d). In the 

beginning, the diameter value increases with the scale 

until it reaches the maximum value. After that, the 

diameter value gradually goes down toward the 

minimum value of 1 when all microcalcifications are 

connected. Note that the maximum diameter of the 

malignant cluster is larger than that of the benign 

cluster. As indicated above, microcalcifications in the 

malignant cluster tend to present a linear topology 

and as such form a connected component having a 

longer diameter. For the resulting average clustering 

coefficients of the two clusters, as shown in Fig. 4(f), 

the malignant cluster obtains larger values at all 

scales than the benign cluster. Fig. 4(g) presents how 

the giant connected component ratio varies with 

scale. As the scale increases, more and more 

microcalcifications in the cluster are absorbed into 

the giant connected component until all of them are 

included. Thus, the resulting giant connected 

component ratio continuously increases until it goes 

up to the maximum value of 1. Note that the giant 

connected component ratio of the malignant cluster 

reaches its maximum at a much smaller scale than the 

benign cluster. The eighth feature set composed of 

the percentage of isolated points is provided in Fig. 

4(h). In contrast to the giant connected component 

ratio, the percentage of isolated points decreases as 

the scale increases, which is reduced to 0 when all 

microcalcifications are linked together. The values 

for the malignant cluster are smaller than those of the 

benign cluster, and moreover, the malignant cluster 

achieves 0% at a much smaller scale than the benign 

cluster. These all indicate that the malignant cluster is 

more densely distributed and, therefore, generates a 

more connected microcalcification graph than the 

benign cluster at a specific scale. 

D. Classification of Microcalcification Clusters 

Four k-nearest neighbors (kNN)-based classifiers are 

used for classifying microcalcification clusters into 

malignant and benign. The classical kNN classifier 

[34] is a popular and conceptually intuitive instance-

based learning approach. A numberof alternatives are 

employed which attempt to address some inherent 

shortcomings of the classical kNN. Fuzzy nearest 

neighbors (FNN) [35] extends the classical kNN by 

fuzzifying the memberships for test and training 

objects. Fuzzy rough nearest neighbors (FRNN) [36], 

[37] models two different types of uncertainty: 

fuzziness and indiscernibility. Vaguely quantified 

nearest neighbors (VQNN) [38] incorporates the 

uncertainty modeling of FRNN and also employs 

vague quantifiers which limit the influence that noisy 

data might have on the classification outcomes. 

These approaches offer further flexibility, improved 
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generalization, and retain human interpretability 

when 

compared to techniques such as ANN and SVM. In 

addition, it should be noted that the classical kNN is 

employed for the classification task such that the 

proposed method can be easily compared with 

existing work in the literature. 

A. Experimental Setup 

    To evaluate the performance of the classifier 

models built using the multiscale topological feature 

vectors, a leaveone-out cross-validation (LOOCV) 

scheme was employed for all datasets, and an 

additional stratified ten runs tenfold cross-validation 

(10-FCV) scheme was employed for the DDSM 

dataset to investigate how significantly these two 

cross-validation schemes may affect the performance. 

Two evaluation metrics were used for this work. The 

first was overall classification accuracy (CA), which 

is defined as the percentage of microcalcification 

clusters correctly classified, providing a summary of 

the performance for balanced datasets (such as the 

datasets used here). ROC analysis was used as the 

second evaluation approach. An ROC curve is a plot 

of the true positive 

rate (TPR) against the FPR, which describes the 

whole range of possible operating characteristics for 

a binary classifier model. Here, TPR is defined as the 

number of correctly classified malignant cases 

divided by the total number of malignant cases, and 

FPR is defined as the number of benign cases 

incorrectly classified as malignant divided by the 

total number of benign cases. ROC analysis can be 

employed in order to assess the predictive ability of a 

classifier by using the area under the ROC curve 

denoted by Az[39]. Azis a statistically consistent 

measure and is equivalent to the Wilcoxon signed-

ranks test, which is a nonparametric alternative to the 

paired t-test [40], [41]. All of the classification and 

evaluation aspects were completed using then WEKA 

data mining suite [42]. Moreover, to provide a 

comparison between the classification results based 

on manually and automatically segmented 

microcalcifications (and also to investigate the 

robustness of the proposedmethod to 

microcalcification segmentation variations), itwas 

tested using both manual annotations and automatic 

detection results for the MIAS dataset. In addition, to 

evaluate the stability of the proposed approach with 

respect to the size of the dataset, a number of subsets 

were randomly selected from each dataset for cross-

validation.Specifically, for theMIAS dataset, two 

groups of random subsetswere selected, consisting of 

ten (five malignant and five benign)and 15 (seven 

malignant and eight benign) cases, respectively. For 

the Digital dataset, three groups of random subsets 

wereselected, consisting of ten (five malignant and 

five benign),15 (seven malignant and eight benign) 

and 20 (nine malignantand 11 benign) cases, 

respectively. For the DDSM dataset, sixgroups of 

random subsets were selected, consisting of ten 

(fivemalignant and five benign), 15 (seven malignant 

and eight benign),20 (nine malignant and 11 benign), 

40 (18 malignant and22 benign), 80 (36 malignant 

and 44 benign), and 160 (72malignantand 88 benign) 

cases, respectively. Each random selectionwas 

repeated 100 times, which produced 100 random 

subsets ofeach size for each dataset. The means, 

standard deviations, andmaximum and minimum 

values of CA and Azwere statisticallyanalyzed over 

each group of 100 random subsets, which 

areprovided in the following section. 

B. Experimental Results 

We have used two digitized and one full-field digital 

datasets (see Section II for details) for evaluating the 

performance of the proposed approach in 

discriminating between malignant and benign 

microcalcificationclusters.We have investigated a 

range of values for S, which determines the 

dimensionality of the feature space. As described in 

Section III-C, the multiscale topological feature 

vectors are extracted from a set of microcalcification 

graphs generated at scales s = 0, 1, . . . , S −1, which 

are composed of eight graph feature sets. Thus, the 

dimensionality of the multiscale topological feature 

space is equal to 8 ×S. The largest scale used in the 

experiments was set to 65, and therefore, the 

dimensionality of the feature space was up to 520. In 

addition, we have used a range of values for k, which 

determines the number of the nearest neighbors used 

to build the classifier models. Fig. 5 shows the results 

for a range of scales (S) defining the feature space for 

the DDSM dataset. As can be seen, the results are 

stable over a range of different scales. Azresults as a 

function of the k value show a similar stability over a 

range of k = [1. . . 10] for the MIAS and Digital 

datasets, and k = [12 . . . 30] for the DDSM dataset. 

For brevity, detailed results of this are left out of the 

paper. Table II shows the best classification results 

achieved by the four classifiers over 65 scales, 

including CA [see Table II(a)] and Az[see Table 

II(b)]. 
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The CA is given at the scale maximum scoring 

Azvalue. For the MIAS dataset, when using the 

manual annotations, the best CA was 95% with one 

benign case misclassified and the largest Azwas 0.96, 

produced by all the four classifiers; when using the 

automatic detection results, the best CA was also 

95% 

with the same benign case misclassified, and the 

largest Azof 0.96 was also obtained by all the four 

classifiers. For the Digital dataset, the best CA of 

96% with one malignant case misclassified and the 

best Azof 0.96 were achieved by kNN and FNN. For 

the DDSM dataset, when using LOOCV, kNN 

obtained the best CA of 86% and the largest Azof 

0.90; for ten-fold cross validation, kNNalso indicated 

the best performance, and the CA and Azwere 85.2 ± 5.7% and 0.91 ± 0.05, respectively [standard 

deviations were calculated across 100 classifier 

models (10 folds ×10 runs)]. 

 

 
As described in Section IV-A, to evaluate the 

stability of theproposed approach with respect to the 

size of the dataset, a set of subsets consisting of 10, 

15, 20, 40, 80, 160 cases were randomly sampled 

from the MIAS, DDSM, and Digital datasets. 

Hundred random subsets were generated for each 

number of cases. The 

means, standard deviations, and maximum and 

minimum values of CA and Azcalculated over each 

group of 100 random subsets are provided in Table 

III, where the results were generated using kNN and 

LOOCV. As shown in Table III, with regard to each 

dataset, the random subsets containing a small 

number of cases produced slightly worse results with 

a larger standard deviation;however, the standard 
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deviationsof CA and Azwere reduced asthe number of 

cases in  

the subsets was increased. Note that the random 

subsets containing the largest number of cases 

selected 

from the three datasets (15, 20, and 160) achieved 

very similar results to those based on the whole 

datasets. 

 
In addition, we investigated redundancy among the 

defined topological feature set and explored the graph 

metrics which contributed most to malignancy 

analysis of microcalcificationclusters. We performed 

feature selection by employing the Cfs Subset E 

valattribute evaluator and the Greedy Stepwise search 

method in WEKA. The CfsSubsetEval attribute 

evaluator evaluates the importance of a subset of 

features by estimating the individual predictive 

ability of each feature as well as the extent of 

redundancy between them, and as such features that 

are highly correlated with the class while have low 

intercorrelationare more likely to be selected (see 

[43] for more information). The Greedy Stepwise 

search method performs a greedy forward or 

backward search through the feature space, which 

starts with no or all features and terminates when any 

addition or reduction 

of the currently selected feature subset results in a 

decrease in evaluation [44]. We used LOOCV for 

MIAS and Digital, while for DDSM, we used ten 

runs stratified ten-fold cross-validation. It should be 

noted that the feature selection is only performed on 

the training data, and therefore, it cannot over fit 

since there is no bias. If we did not use cross-

validation, then we could runinto the risk of 

overtraining, but even with LOOCV, the test set 

remains uncorrelated with the  

 

 
training data. The number of the resulting feature 

subsets was 20, 25, and 100 for MIAS, Digital, and 

DDSM, respectively. Fig. 6 illustrates how many 

times each of the eight graph metrics were taken after 

feature selection. As can be seen from Fig. 6, graph 

metrics No. 1 and 7, i.e., number of subgraphs and 

giant connected component ratio, seemed to be the 

two most important graph metrics among the eight, 

which 

were most frequently selected from the multiscale 

topological feature set. As indicated in Table I, these 

two graph metrics are mainly related to the 

number/distribution of microcalcifications within a 

cluster. Their precise clinical significance for the 

diagnosis of malignant and benign microcalcification 

clusters could be further investigated. 
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The classification results for the three datasets after 

featureselection are provided in Table IV. Here, the 

results were generated by the kNN classifier using the 

resulting feature subsets, which were slightly lower 

when compared to those results obtained before 

feature selection (see Table II). 

V. DISCUSSION 

    As described above, good classification results 

have been obtained for all the three datasets. The 

Digital dataset provided the best results, which might 

be due to the more accurate detection of 

microcalcifications using digital mammography. As 

stated in [16], the detection approach indicated the 

best performance when using the Digital dataset, and 

therefore, more realistic detection results of 

microcalcifications can be provided for the 

classification task. The MIAS dataset produced the 

second best classification results, and moreover, 

using manual annotations and automatic detections 

achieved the same performance. This indicates that 

the proposed method seems to be robust with respect 

to variations between manual and automatic 

segmentations of microcalcifications. For the DDSM 

dataset, very similar results were shown when using 

the leave-one-out and ten-fold cross-validation 

methods, showing a decreased performance in the 

results when compared to the other datasets. It might 

be partially explained by the fact that the detection 

approach performs worst for the DDSM database 

among the three datasets [16]. Moreover, the DDSM 

dataset used in our experiments contains 300 cases, 

which is expected to give a larger variability than the 

small datasets (especially as the DDSM dataset was 

generated using different digitizers). However, the 

obtained classification results are still comparable or 

even better than the related work reviewed by Cheng 

et al. [9] or Table V, where most publications used 

smaller databases than ours. 

    We compared the proposed method with related 

publications in the literature. Table V shows a 

summary of the comparison. Note that the various 

approaches use different images taken from different 

databases, and therefore, this is a qualitative 

comparison. In [7], the 100% CA was obtained by 

classifying 143 individual microcalcifications from 

18 biopsy proven cases based on a leave-one-

microcalcification-out approach, which is different 

from the goal of our classification of 

microcalcification clusters. In [10], the classification 

of microcalcification clusters was based on the 

maximum feature value obtained by a selected single 

microcalcification rather than the whole cluster (and 

therefore some manual aspects were involved in the 

extraction process). In [46], the high classification 

performance was obtained by introducing an 

optimized decision making step, which was 

performed afterward through statistical analysis of 

the classifier outputs to achieve the minimum cost of 

error classification. As shown in Table V, the 

obtained classification results are comparable to the 

various approaches. 

    In addition, in order to enable a direct comparison, 

we extracted the features used in previously 

published works that showed the most promising 

performance [7], [10], [46], [47] and performed 

malignancy analysis of microcalcification clusters on 

our datasets. Table VI shows a summary of the best 

CA and Azvalues achieved using our proposed 

topology-based feature set and the other three feature 

sets [7], [10], [46], [47], where the results were all 

produced using kNN and LOOCV. As shown in 

Table VI, our proposed approach performed best 

among the four approaches and achieved the best CA 

and Az results for all the three datasets. In addition, 

our proposed approach provided a significant 

improvement over the existing methods, and when 

the results from Table VI were compared using an 

unpaired t-test, a p value of p <0.01 was obtained in 

all cases. 

    One inherent limitation of the developed method is 

that it cannot provide a reliable classification for the 

case where the cluster is structure less or few 

microcalcifications are segmented within the cluster. 

An extreme is when only a single microcalcification 

is detected from the cluster by the automatic 

detection approach, it will fail to discriminate 

malignant from benign based on the topology. 

Another concern of the proposed method is that its 

performance might depend on the performance of the 

microcalcification detection approach. False 

negatives or false positives may affect the global 

topology/connectivity of microcalcification 



                                                                                                ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 

             Vol. 3, Special Issue 24, April 2016  

 

13 

All Rights Reserved © 2016 IJARTET 

 

clusters. However, the experimental results 

demonstrate the robustness and effectiveness of the 

developed method when combined with automatic 

microcalcification detection. 

    In the experiments, the clusters with few 

rmicrocalcifications being segmented by the 

automatic detection approach tend to be classified as 

benign since their graph metrics are more in line with 

those of a benign cluster. Thus, the underdetected 

malignant cases where the microcalcifications 

indicate a sparse distribution could be misclassified 

into benign. On the other hand, the benign cases with 

relatively a larger number of microcalcifications 

(including the false positives) being segmented from 

the clusters could indicate a malignant-like 

distribution and as such could be misclassified into 

malignant. Fig. 7 shows the CA as a function of the 

number of microcalcifications for the DDSM dataset 

using leave-one-out and ten-fold cross-validation. 

The results were obtained using the kNN classifier 

with S = 40 for LOOCV and S = 41 for ten-fold 

cross-validation since they correspond to the best 

performing scale for this classifier as displayed in 

Table II. For display purposes, the results shownin 

Fig. 7 were averaged such that each bar represents 

the mean CA over five sizes of microcalcification 

clusters.  

 
 

    The results show that there is a slight dip in CA 

when the number of microcalcifications falls in the 

11–15 range. This experiment was not replicated with 

the MIAS and Digital dataset due to their small 

sample size and good CA. Due to the fact that only a 

few samples are misclassified, the sample size would 

not be big enough to show any relationship between 

the number of microcalcifications and the CA. 

    As discussed above, some highlights of this study 

should be noted. For the MIAS dataset, the same 

methodologywas applied based on both manually 

annotated and automatically detected 

microcalcifications, and the same classification 

performancewas obtained. This indicates the 

robustness of the proposed method to detection 

errors. For the DDSM dataset, we used a larger set of 

cases than related publications and achieved good 

results. In addition to these two well-known digitized 

databases, 



                                                                                                ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 

             Vol. 3, Special Issue 24, April 2016  

 

14 

All Rights Reserved © 2016 IJARTET 

 

we evaluated our method using a full-field digital 

database and obtained improved classification results. 

This demonstrates the capability of our method in 

dealing with two categories of mammograms, which 

allows it to be applied in both film and digital 

mammography. We also investigated the stability of 

the proposed method against the size of the 

evaluation dataset. For each dataset, no significant 

difference in the classification performance was 

shown among the subsets of varied numbers of cases. 

Furthermore, we investigated the most significant 

microcalcification graph metrics for malignancy 

analysis by performing feature selection. The most 

frequently selected graph metrics are worth further 

investigation from a clinical point of view. In 

addition to a qualitative comparison with related 

publications, we implemented a direct comparison 

between the proposed approach and three state-of-

the-art approaches, and our method demonstrated the 

best performance for all the three datasets used in this 

study. In addition, we used the CAD detection results 

directly instead of manual segmentation results for all 

the three datasets. High classification accuracies and 

good ROC analysis results were obtained when 

compared to the state-of-the-art approaches. This 

indicates its potential application in conjunction with 

automatic detection approaches in CAD systems. 

    As future work, other features such as shape and 

texture of individual microcalcifications and the 

whole cluster could be incorporated to build a 

complete framework for malignancy analysis of 

microcalcification clusters. A similarity measure 

between microcalcification graphs can be 

investigated in order to discriminate between 
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malignant and benign clusters using the graph-based 

representation directly without generating graph 

feature vectors. On the other hand, alternative 

classifiers (e.g., random forests, ANN, and SVM) 

could also be investigated. In addition, we will 

extend the evaluation using a larger collection of 

digital mammograms. 

VI. CONCLUSION 

    We have presented a method for classifying 

microcalcification clusters in mammograms based on 

morphological topology analysis. This is a novel 

approach to analyze microcalcifications in terms of 

the connectivity and topology for discriminating 

malignant from benign clusters. Unlike most features 

(e.g., shape/morphological features) in previous 

publications extracted at a single scale, a 

representation of microcalcification clusters covering 

the multiscale characteristics was developed in this 

paper. The topology/connectivity of 

microcalcification clusters was analyzed using 

multiscale morphology. A set of microcalcification 

graphs were constructed to describe the topological 

structure of microcalcification clusters at multiple 

scales. When analyzing the topology of 

microcalcification clusters, we extracted eight graph 

metrics from microcalcification graphs generated at 

multiple scales, which are number of sub graphs, 

average vertex degree, maximum vertex degree, 

average vertex eccentricity, diameter, average 

clustering coefficient, giant connected component 

ratio, and percentage of isolated points. Theresulting 

eight graph feature sets were aggregated and 

constituted the multiscale topological feature vector, 

which has been used to classify microcalcification 

clusters into malignant and benign. 

    The proposed method has been evaluated using 

three datasets: MIAS, DDSM, and Digital. Four k-

nearest-neighbors-based algorithms (kNN, FNN, 

FRNN, and VQNN) have been used for the 

classification task. Good classification results have 

been obtained for all the datasets. By investigating a 

set of S values for the number of scales and using a 

range of k values for the classifier, the obtained best 

CA was 95% for MIAS with manual annotations, 

95% for MIAS with automatic detections, 96% for 

Digital, 86% for DDSM using LOOCV, and 85.2 ±5.7% for DDSM based on ten-fold cross-

validation, and the largest area under the ROC curve 

was 0.96, 0.96, 0.96, 0.90,and0.91 ±0.05, 

respectively 
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