
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

 An Efficient Ranking and Predicting based

Keyword Query Interface
1. S.Jayasundar , 2. Dr.V.N.Rajavarman

Research Scholar, Dr.M.G.R Educational and Research Institute. University,Chennai.

Professor, Dr.M.G.R Educational and Research Institute. University,Chennai.

Abstract— The amount of information in the world is increasing exponentially. Keyword search has proven to be an effective method to discover and

retrieve information from database as evidenced by the success of search engines. Unfortunately, much common information retrieve and management

systems do not support the familiar query search that people how expect. Keyword Query Interface (KQI) technique is most common technique for

access data from the database due to their flexibility and exploring the data and ease of use in searching, but it is most suffer from low precision and

low ranking quality. In this paper we evaluate the difficulty of a hard keyword query over databases. And we proposed the Structural Robustness (SR)

score based ranking algorithm can compute the relevance of the query. Our experiments results show that our proposed ranking algorithm efficiently

to predict the difficulty of the query with higher accuracy.

Index Terms – Keyword Query, Unstructured Database, Robustness, Query Efficiency

1 INTRODUCTION

Data mining is a field which has seen rapid advances in

recent years [8] because of the immense advances in

hardware and software technology which has led to the

availability of different kinds of data. This is particularly

true for the case of structured data, where the development

of hardware and software platforms for the web and social

networks has enabled the rapid creation of large repositories

of different kinds of data. While structured data is generally

managed with a database system, and the data is typically

managed via a search engine due to the lack of structures [3].

A search engine enables a user to find useful information

from a collection conveniently with a keyword query.

 Predicting the retrieval performance or determining the

degree of difficulty of a query is a challenging research area

which has received a lot attention recently [5, 7]. The aim is

to create an efficient method (predictors) for the task, as a

reliable low precision and accurate prediction mechanism

would enable the creation of more adaptive and intelligent

retrieval systems. Keyword query interface is a popular

technique for retrieve information from database. Since any

entity in a data set that contains the query keywords is a

potential answer, keyword queries typically have many

possible answers. The KQI must identify the information

needs behind keyword queries and rank the answers so that

the desired answers appear at the top of the list [1], [2].

 Researchers have proposed lots of techniques to detect

difficult queries over text document collections. However,

these techniques are not applicable to our problem since they

ignore the structure of the database. In particular, as

mentioned earlier, a KQI must assign each query term to a

schema elements in the database. It must also distinguish the

desired result types. We empirically show that direct

adaptations of these techniques are ineffective for structured

data.

 In this paper we evaluate difficult keyword query over

databases and propose a novel method to detect such queries.

We have used structured data to gain insight about the

degree of the difficulty of a query given to the database. We

have implemented some of the most popular and

representative algorithms for keyword search on databases

and used them to evaluate our techniques. The results show

that our method predicts the degree of the difficulty of a

query efficiently and effectively.

2 RELATED WORK

Researches have been proposed many methods to predict the

difficult query over structured and unstructured documents

[9], [10]. Among recent systems that enable keyword-based

search we find Microsoft DB Xplorer [Chaudhuri et al.,

2006]. It uses a symbol table to store tables, columns, and

rows of all data values, which is looked up during the search

to identify the locations that contain all the keywords

appearing in the question. Anyway there is no need to

maintain a symbol table if we can rely on the actual database

and its underlying metadata.

 The BANKS [Hulgeri et al., 2010] and Object Rank

[Balmin et al., 2012] systems apply ranking to keyword

search over databases: results are ranked with respect to their

relevance, computed using an approach similar to PageRank

in BANKS while Object Rank applies authority-based

ranking. One beneficial feature of BANKS is that it also

takes into account metadata while performing the search.

Both these systems use graphs to model relational databases,
1349

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

where each node represents an object of the database. The

ranked answer is a sub-graph where weighted nodes are

ordered based on descending relevance. The same method is

used in our approach to rank results in a way that reflects the

correctness of the answers generated by the system with

respect to the question, i.e. based on the number of matching

substructures between the relational tree and the

propositional tree.

 Precis [Koutrika et al., 2009] is another system that uses

both an inverted index and a directed schema graph to

generate a new database and a personalized natural language

synthesis of result. Besides, keyword question answering is

implemented using huge inverted indexes and symbol tables

that need to be rebuilt whenever the database is updated.

Indeed, this approach is not suitable for very large databases

where the high number of tables and rows would prohibit

symbol table maintenance. In addition, it's worth noting that

these systems don't consider solutions that include two tuples

from the same relation. That is, they retrieve a single-value

answer, while the solution is often a set of values or strings.

 The main techniques in that prediction are pre retrieval

output and post retrieval methods. Pre-retrieval methods [5],

predict the query difficulty without computing its results.

These methods are mostly used in the statistical properties of

the terms in the query to measure ambiguity, or term

relatedness, specificity of the query to predict its difficulty.

But this method has limited prediction accuracies. Post-

retrieval methods have been used in results of the query to

predict its difficulty and it was having many categories.

2.1 Ranking-score-based

In this method score of a document returned by the retrieval

systems for an input query and the similarity of the

document is estimated. Zhou and Croft argue that the

information gained from a desired list of documents should

be much more than the information gained from typical

documents in the collection for an easy query. They measure

the degree of the difficulty of a query by computing the

difference between the weighted entropy of the top ranked

results’ scores and the weighted entropy of other documents’

scores in the collection [14].

2.2 Robustness-based

Robustness based ranking algorithm is another post retrieval

method. This method that the result of an easy query is

relatively stable against the perturbation of queries or

ranking algorithms and some time the machine learning

techniques are used to predict the hardness of difficult

queries [15]. When we applied these methods to structured

data they have similar limitations. Some researchers propose

frameworks that theoretically explain existing predictors and

combine them to achieve higher prediction accuracy [14],

[15].

3 HARD QUERY DATABASE PROPERTIES

The queries which are difficult to answer correctly to the

user are called hard keyword queries. The researchers

propose following sources of difficulty for answering a

query over a database [4] as follows

3.1 More entities matches the term in query

If more entities match the terms in a query, the query is less

specific and it is harder to answer properly. For example:

there are more than one person named DAVID in the IMDB

database and user submits query Q1: DAVID, the keyword

query interface must resolve desire DAVID that satisfy

user’s information need. If the more number of people in

IMDB is DAVID then it will be hard to predict the correct

answer. As oppose to Q1, Q2: KIM matches the smaller

number of people in IMDB, so it is easier for keyword query

interface to return relevant answer.

3.2 Attribute level ambiguity: Each attribute explains a

different feature of an entity and defines the context of terms

in attribute values of it. If a query matches different

attributes in its candidate answers, it will have a more

diverse set of potential answers in database, and hence it has

higher attribute level ambiguity. For example: Q3:

GODFATHER, contains in title and the distributor of IMDB

dataset. Keyword query interface must find out the desired

attribute for GODFATHER to find correct answer. Answer

for the query Q4: SPEED does not match with any instance

of attribute distributor, so keyword query interface easily

predict the relevant answer for this query.

3.3 Entity level ambiguity: Each entity set contains the

information about a different type of entities and defines

another level of context (in addition to the context defined

by attributes) for terms. Hence, if a query matches entities

from more entity sets, it will have higher entity set level

ambiguity.

4 EFFICIENT COMPUTATIONS OF SR SCORE

The basic information of structured database attribute value

is very lower than plain documents but the structured

database contains same size of information in unstructured

dataset. For instance every XML document of INEX dataset

collections contains thousands of elements with textual

information.

4.1 SR (Structured Robustness) Algorithm

In structured robustness algorithm which calculate SR score

based on K result entity. Each ranking algorithm uses some

statistics about query terms or attributes values over the

whole content of DB. The global attribute data entity set

stored in M (Metadata) and I (inverted indexes) in the SR

Algorithm pseudo code.

4.2 Input

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

Query Q, top-K result list L of Q by ranking function g,

Metadata M, Inverted indexes I, Number of corruption

iteration N.

4.3 Output:

S R score for Q

SR	← 0; C ←	{}; // C catches ��, �� for keywords in Q

FOR � = 1 → �	DO

�′ ← �;	�′ ← �;	�′ ← �;/Corrupted copy of I, M and L

FOR each result R in L DO

 FOR each attribute value A in R DO

 �′ ← �;
 FOR each keywords ω in Q DO

Compute # of ω in �′ by equation; // if��,

ω,��, ω needed

 But not in C, calculate and cache them

 IF # of ω varies in �′and A THEN

 Update�′,�′ and entry of ω in �′;

 Add �′ to �′ ;

Add �′to �′:

Rank �′ using g, which returns L, based on �′, �′ ;

Compute ��+= �����, �′�; // Sim computes spearman

correlation

RETURN ← ��/� ; // AVG score over N rounds

 Based on our results the following reasons the SR

algorithm increases the processing query time and

efficiency. First each attribute value of K result to be

corrupted second one entity has many attributes so they will

be increase the attribute values corruption. Third the SR

ranking algorithm has to re-rank top result in N time.

5 APPROXIMATION ALGORITHMS FOR SR

ALGORITHM

In this section we are proposed different approximation

algorithms to increase the efficiency of structured robustness

algorithm.

5.1 QAO-Approx algorithm

Query-specific Attribute values only Approximation (QAO-

Approx) corrupts only the attribute values that match at least

one query term. This approximation algorithm influences the

following observations: The number of attribute values that

contain at least one query term is much smaller than the

number of allattributes values in each entity. The noise in the

attribute values that contain query terms dominates the

corruption effect. So we can decrease the time spent on

corruption if we corrupt only the attribute values that contain

query terms.

5.2 SGS-Approx algorithm

Static global stats approximation (SGS-Approx) algorithm

are used to corrupt only the top-K result entities, the global

DB statistics do not change much.SR Algorithm spends a

large amount of the robustness calculation time on the loop

that re-ranks the corrupted results (Line 13 in SR

Algorithm), by taking into account the updated global

statistics. Since the value of K (e.g., 10 or 20) is much

smaller than the number of entities in the DB, the top K

entities constitute a very small portion of the DB. Thus, the

global statistics largely remain unchanged or change very

little. Hence, we use the global statistics of the original

version of the DB to re-rank the corrupted entities. If we

refrain from updating the global statistics, we can combine

the corruption and ranking module together. This way re-

ranking is done on-the-fly during corruption.

5.3 Combination of QAO-Approx and SGS-Approx

QAO-Approx and SGS-Approx improve the efficiency of

robustness calculation by approximating different parts of

the corruption and re-ranking process. Hence, we combine

these two algorithms to further improve the efficiency of the

query difficulty predication.

6 PERFORMANCE EVALUATIONS

6.1 QAO-Approx

Fig.1 shows the results of using QAO-Approx on INEX

(marked-up version of the Wikipedia corpus). We measure

the prediction effectiveness for smaller valuesof N using

average correlation score. The QAO-Approx algorithm

delivers acceptable correlation scores and the corruption

times of about 2 seconds for N = 10. Comparing to the

results of SR Algorithm for N = 300 on INEX, the Pearson’s

correlation score drops, because less noise is added by

second and third level corruption. These results show the

importance of these two levels of corruption.

6.2 SGS-Approx

Fig. 2 depicts the results of applying SGS-Approx on INEX.

Since re-ranking is done on-the-fly during the corruption,

SR-time is reported as corruption time only. As shown in

Fig. 2, the efficiency improvement on the INEX dataset is

slightly worse than QAO-Approx, but the quality

(correlation score) remains high.

6.3 Combination of QAO-Approx and SGS-Approx

We can combine QAO-Approx and SGS-Approx algorithms

to achieve better performance. Fig. 3presents the results of

the combined algorithm for INEX databases. Since we use

SGS-Approx, the SR-time consists only of corruption time.

Our results show that the combination of two algorithms

works more efficiently than either of them with the same

value for N.

6.4 SR algorithm

The average computation time of SR score (SR-time) using

SR Algorithm and compare it to the average query

processing time (Q-time) using PRMSfor the queries in our

query workloads. SR-time mainly consists of two parts: the

time spent on corrupting K results and the time to re-rank the

K corrupted results. We have reported SR-time using

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

(corruption time + re-rank time) format. We see that SR

Algorithm incurs a considerable time overhead on the query

processing. This overhead is higher for queries over the

INEX dataset, because there are only two entity sets, (person

and movie), and all query keywords in the query load occur

in both entity sets. Every attribute value in to K entities will

be corrupted due to the third level of corruption.

Fig. 1. Approximations in INEX dataset using QAO-Approx

algorithm

Fig. 2. Approximations in INEX dataset using SGS-Approx

algorithm

Fig. 3. Approximations in INEX dataset usingCombination

of QAO and SGS algorithm

 According to our performance study of QAO-Approx,

SGS-Approx, both datasets, the combined algorithm delivers

the best balance of improvement in efficiency and reduction

in effectiveness for both datasets. On both datasets, the

combined algorithm achieves high prediction accuracy (the

Pearson’s correlation score about 0.5) with SR-time around

1 second. Using the combined algorithm over INEX when

the value of N is set to 20, the Pearson’s and Spearman’s

correlation scores are 0.513 and 0.396 respectively and the

time decreases to about 1 second. For SR Algorithm on

INEX, when N decreases to 10, the Pearson’s correlation is

0.537, but SR-time is over 9.8 seconds, which is not ideal.

Thus, the combined algorithm is the best choice to predict

the difficulties of queries both efficiently and effectively.

7 CONCLUSIONS

In this paper we are using keyword query interface technique

for difficult keyword query predicting over databases. And

we proposed algorithms to measure the degree of the

difficulty over unstructured data using ranking robustness

principle. Finally simulation results show that our algorithm

efficiently predicts the difficulty of the query with higher

accuracy.

8 REFERENCES

[1] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient

IRstyle keyword search over relational databases,” in Proc. 29th

VLDB Conf., Berlin, Germany, 2003, pp. 850–861.

0.3

0.35

0.4

0.45

0.5

0.55

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 50 100 300

Avg corruption time
Avg re-rank time
Avg Pearson's correlation
Avg Spearman's correlation

S
R

-t
im

e
 (

m
s)

co
rr

e
la

ti
o

n

N

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 50 100 300

Avg corruption time

Avg Pearson's correlation

Avg Spearman's

correlation

S
R

-T
im

e
 (

m
s)

co
rr

le
a

ti
o

n

N

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 50 100 300

Avg corruption time

Avg Pearson's correlation

Avg Spearman's correlation

S
R

-T
im

e
 (

m
s)

co
rr

le
a

ti
o

n

N

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

[2] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow, “Learning to

estimate query difficulty: Including applications to missing content

detection and distributed information retrieval,” in Proc. 28th

Annu. Int. ACM SIGIR Conf. Research Development Information

Retrieval, Salvador, Brazil, 2005, pp. 512–519.

[3] W. B. Croft, D. Metzler, T. Strohma, Search Engines - Information

Retrieval in Practice, Pearson Education, 2009.

[4] A. Trotman and Q. Wang, “Overview of the INEX 2010 data

centric track,” in 9th Int. Workshop INEX, Vugh, The

Netherlands, 2010.

[5] Y. Zhao, F. Scholer, and Y. Tsegay, “Effective pre-retrieval query

performance prediction using similarity and variability evidence,”

in Proc. 30th ECIR, Berlin, Germany, 2008, pp. 52–64.

[6] C. Hauff, L. Azzopardi, D. Hiemstra, and F. Jong, “Query

performanceprediction: Evaluation contrasted with effectiveness,”

inProc. 32nd ECIR, Milton Keynes, U.K., 2010, pp. 204–216.

[7] B. He and I. Ounis.Inferring query performance using pre-retrieval

predictors. InSPIRE’04, pages 43–54, 2004.

[8] J. He, M. Larson, and M. de Rijke.Using coherence-based

measures to predict query difficulty. In ECIR’08, pages 689–694,

2008.

[9] K. Collins-Thompson and P. N. Bennett, “Predicting query

performance via classification,” in Proc. 32nd ECIR, Milton

Keynes, U.K., 2010, pp. 140–152.

[10] A. Shtok, O. Kurland, and D. Carmel, “Predicting query

performance by query-drift estimation,” in Proc. 2nd ICTIR,

Heidelberg, Germany, 2009, pp. 305–312

[11] J. D. Gibbons and S. Chakraborty, Nonparametric

StatisticalInference. New York, NY: Marcel Dekker, 1992.

[12] S. M. Katz, “Estimation of probabilistic from sparse data for

thelanguage model component of a speech recognizer,” IEEE

Trans.Signal Process., vol. 35, no. 3, pp. 400–401, Mar. 1987.

[13] C. Zhai and J. Lafferty, “A study of smoothing methods for

languagemodels applied to ad hoc information retrieval,” in

Proc.24th Annu. Int. ACM SIGIR Conf. Research Development

Information Retrieval, New Orleans, LA, USA, 2001, pp. 334–

342.

[14] Y. Zhou and W. B. Croft, “Query performance prediction in web

search environments,” in Proc. 30th Annu. Int. ACM SIGIR,New

York, NY, USA, 2007, pp. 543–550.

[15] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow, “Learning to

estimate query difficulty: Including applications to missing content

detection and distributed information retrieval,” in Proc. 28th

Annu. Int. ACM SIGIR Conf. Research Development Information

Retrieval, Salvador, Brazil, 2005, pp. 512–519.

[16] O. Kurland, A. Shtok, S. Hummel, F. Raiber, D. Carmel, andO.

Rom, “Back to the roots: A probabilistic framework for

queryperformanceprediction,” in Proc. 21st Int. CIKM, Maui, HI,

USA,2012, pp. 823–832.

[17] O. Kurland, A. Shtok, D. Carmel, and S. Hummel, “A

Unifiedframework for post-retrieval query-performance

prediction,” inProc. 3rd Int. ICTIR, Bertinoro, Italy, 2011, pp. 15–

26.

[18] S. Cheng, A. Termehchy, and V. Hristidis, “Predicting the

effectivenessof keyword queries on databases,” in Proc. 21st

ACMInt. CIKM, Maui, HI, 2012, pp. 1213-1222.

[19] A. Termehchy, M. Winslett, and Y. Chodpathumwan,

“Howschema independent are schema free query interfaces?” in

Proc.IEEE 27th ICDE, Hannover, Germany, 2011, pp. 649–660.

1353

