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Abstract— The amount of information in the world is increasing exponentially. Keyword search has proven to be an effective method to discover and 

retrieve information from database as evidenced by the success of search engines. Unfortunately, much common information retrieve and management 

systems do not support the familiar query search that people how expect. Keyword Query Interface (KQI) technique is most common technique for 

access data from the database due to their flexibility and exploring the data and ease of use in searching, but it is most suffer from low precision and 

low ranking quality. In this paper we evaluate the difficulty of a hard keyword query over databases. And we proposed the Structural Robustness (SR) 

score based ranking algorithm can compute the relevance of the query. Our experiments results show that our proposed ranking algorithm efficiently 

to predict the difficulty of the query with higher accuracy. 

Index Terms – Keyword Query, Unstructured Database, Robustness, Query Efficiency 

 

1 INTRODUCTION 

Data mining is a field which has seen rapid advances in 

recent years [8] because of the immense advances in 

hardware and software technology which has led to the 

availability of different kinds of data. This is particularly 

true for the case of structured data, where the development 

of hardware and software platforms for the web and social 

networks has enabled the rapid creation of large repositories 

of different kinds of data. While structured data is generally 

managed with a database system, and the data is typically 

managed via a search engine due to the lack of structures [3]. 

A search engine enables a user to find useful information 

from a collection conveniently with a keyword query.  

      Predicting the retrieval performance or determining the 

degree of difficulty of a query is a challenging research area 

which has received a lot attention recently [5, 7]. The aim is 

to create an efficient method (predictors) for the task, as a 

reliable low precision and accurate prediction mechanism 

would enable the creation of more adaptive and intelligent 

retrieval systems. Keyword query interface is a popular 

technique for retrieve information from database. Since any 

entity in a data set that contains the query keywords is a 

potential answer, keyword queries typically have many 

possible answers. The KQI must identify the information 

needs behind keyword queries and rank the answers so that 

the desired answers appear at the top of the list [1], [2]. 

         Researchers have proposed lots of techniques to detect 

difficult queries over text document collections. However, 

these techniques are not applicable to our problem since they 

ignore the structure of the database. In particular, as 

mentioned earlier, a KQI must assign each query term to a 

schema elements in the database. It must also distinguish the 

desired result types. We empirically show that direct 

adaptations of these techniques are ineffective for structured 

data. 

        In this paper we evaluate difficult keyword query over 

databases and propose a novel method to detect such queries. 

We have used structured data to gain insight about the  

 

 

degree of the difficulty of a query given to the database. We 

have implemented some of the most popular and 

representative algorithms for keyword search on databases  

and used them to evaluate our techniques. The results show 

that our method predicts the degree of the difficulty of a 

query efficiently and effectively. 
 

2 RELATED WORK 

Researches have been proposed many methods to predict the 

difficult query over structured and unstructured documents 

[9], [10]. Among recent systems that enable keyword-based 

search we find Microsoft DB Xplorer [Chaudhuri et al., 

2006]. It uses a symbol table to store tables, columns, and 

rows of all data values, which is looked up during the search 

to identify the locations that contain all the keywords 

appearing in the question. Anyway there is no need to 

maintain a symbol table if we can rely on the actual database 

and its underlying metadata. 

      The BANKS [Hulgeri et al., 2010] and Object Rank 

[Balmin et al., 2012] systems apply ranking to keyword 

search over databases: results are ranked with respect to their 

relevance, computed using an approach similar to PageRank 

in BANKS while Object Rank applies authority-based 

ranking. One beneficial feature of BANKS is that it also 

takes into account metadata while performing the search. 

Both these systems use graphs to model relational databases, 
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where each node represents an object of the database. The 

ranked answer is a sub-graph where weighted nodes are 

ordered based on descending relevance. The same method is 

used in our approach to rank results in a way that reflects the 

correctness of the answers generated by the system with 

respect to the question, i.e. based on the number of matching 

substructures between the relational tree and the 

propositional tree. 

      Precis [Koutrika et al., 2009] is another system that uses 

both an inverted index and a directed schema graph to 

generate a new database and a personalized natural language 

synthesis of result. Besides, keyword question answering is 

implemented using huge inverted indexes and symbol tables 

that need to be rebuilt whenever the database is updated. 

Indeed, this approach is not suitable for very large databases 

where the high number of tables and rows would prohibit 

symbol table maintenance. In addition, it's worth noting that 

these systems don't consider solutions that include two tuples 

from the same relation. That is, they retrieve a single-value 

answer, while the solution is often a set of values or strings. 

       The main techniques in that prediction are pre retrieval 

output and post retrieval methods. Pre-retrieval methods [5], 

predict the query difficulty without computing its results. 

These methods are mostly used in the statistical properties of 

the terms in the query to measure ambiguity, or term 

relatedness, specificity of the query to predict its difficulty. 

But this method has limited prediction accuracies. Post-

retrieval methods have been used in results of the query to 

predict its difficulty and it was having many categories. 

 

2.1 Ranking-score-based 

In this method score of a document returned by the retrieval 

systems for an input query and the similarity of the 

document is estimated. Zhou and Croft argue that the 

information gained from a desired list of documents should 

be much more than the information gained from typical 

documents in the collection for an easy query. They measure 

the degree of the difficulty of a query by computing the 

difference between the weighted entropy of the top ranked 

results’ scores and the weighted entropy of other documents’ 

scores in the collection [14]. 

 

2.2 Robustness-based  

Robustness based ranking algorithm is another post retrieval 

method. This method that the result of an easy query is 

relatively stable against the perturbation of queries or 

ranking algorithms and some time the machine learning 

techniques are used to predict the hardness of difficult 

queries [15]. When we applied these methods to structured 

data they have similar limitations. Some researchers propose 

frameworks that theoretically explain existing predictors and 

combine them to achieve higher prediction accuracy [14], 

[15]. 

 
3   HARD QUERY DATABASE PROPERTIES 

 

The queries which are difficult to answer correctly to the 

user are called hard keyword queries. The researchers 

propose following sources of difficulty for answering a 

query over a database [4] as follows  

 

3.1 More entities matches the term in query  

If more entities match the terms in a query, the query is less 

specific and it is harder to answer properly. For example: 

there are more than one person named DAVID in the IMDB 

database and user submits query Q1: DAVID, the keyword 

query interface must resolve desire DAVID that satisfy 

user’s information need. If the more number of people in 

IMDB is DAVID then it will be hard to predict the correct 

answer. As oppose to Q1, Q2: KIM matches the smaller 

number of people in IMDB, so it is easier for keyword query 

interface to return relevant answer.  

 

3.2 Attribute level ambiguity: Each attribute explains a 

different feature of an entity and defines the context of terms 

in attribute values of it. If a query matches different 

attributes in its candidate answers, it will have a more 

diverse set of potential answers in database, and hence it has 

higher attribute level ambiguity. For example: Q3: 

GODFATHER, contains in title and the distributor of IMDB 

dataset. Keyword query interface must find out the desired 

attribute for GODFATHER to find correct answer. Answer 

for the query Q4: SPEED does not match with any instance 

of attribute distributor, so keyword query interface easily 

predict the relevant answer for this query.  

 

3.3 Entity level ambiguity: Each entity set contains the 

information about a different type of entities and defines 

another level of context (in addition to the context defined 

by attributes) for terms. Hence, if a query matches entities 

from more entity sets, it will have higher entity set level 

ambiguity. 

 
4 EFFICIENT COMPUTATIONS OF SR SCORE 

The basic information of structured database attribute value 

is very lower than plain documents but the structured 

database contains same size of information in unstructured 

dataset. For instance every XML document of INEX dataset 

collections contains thousands of elements with textual 

information.  

4.1 SR (Structured Robustness) Algorithm 

In structured robustness algorithm which calculate SR score 

based on K result entity. Each ranking algorithm uses some 

statistics about query terms or attributes values over the 

whole content of DB. The global attribute data entity set 

stored in M (Metadata) and I (inverted indexes) in the SR 

Algorithm pseudo code. 

 

4.2 Input  
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Query Q, top-K result list L of Q by ranking function g, 

Metadata M, Inverted indexes I, Number of corruption 

iteration N. 

 
4.3 Output:  

S R score for Q 

SR	← 0; C ←	{}; // C catches ��, �� for keywords in Q 

FOR � = 1 → �	DO 

�′ ← �;	�′ ← �;	�′ ← �;/Corrupted copy of I, M and L 

FOR each result R in L DO 

 FOR each attribute value A in R DO 

 �′ ← �; 
 FOR each keywords ω in Q DO 

Compute # of ω in  �′ by equation; // if��, 

ω,��, ω needed 

 But not in C, calculate and cache them 

 IF # of ω varies in �′and A THEN 

 Update�′,�′ and entry of  ω in �′; 

 Add �′ to  �′ ; 

Add �′to �′: 

Rank �′ using g, which returns L, based on �′, �′ ; 

Compute ��+= �����, �′�; // Sim computes spearman 

correlation 

RETURN ← ��/� ; // AVG score over N rounds 

       Based on our results the following reasons the SR 

algorithm increases the processing query time and 

efficiency. First each attribute value of K result to be 

corrupted second one entity has many attributes so they will 

be increase the attribute values corruption. Third the SR 

ranking algorithm has to re-rank top result in N time. 

5 APPROXIMATION ALGORITHMS FOR SR 

ALGORITHM 

In this section we are proposed different approximation 

algorithms to increase the efficiency of structured robustness 

algorithm. 

5.1 QAO-Approx algorithm 

Query-specific Attribute values only Approximation (QAO-

Approx) corrupts only the attribute values that match at least 

one query term. This approximation algorithm influences the 

following observations: The number of attribute values that 

contain at least one query term is much smaller than the 

number of allattributes values in each entity. The noise in the 

attribute values that contain query terms dominates the 

corruption effect. So we can decrease the time spent on 

corruption if we corrupt only the attribute values that contain 

query terms. 

 
5.2 SGS-Approx algorithm 

Static global stats approximation (SGS-Approx) algorithm 

are used to corrupt only the top-K result entities, the global 

DB statistics do not change much.SR Algorithm spends a 

large amount of the robustness calculation time on the loop 

that re-ranks the corrupted results (Line 13 in SR 

Algorithm), by taking into account the updated global 

statistics. Since the value of K (e.g., 10 or 20) is much 

smaller than the number of entities in the DB, the top K 

entities constitute a very small portion of the DB. Thus, the 

global statistics largely remain unchanged or change very 

little. Hence, we use the global statistics of the original 

version of the DB to re-rank the corrupted entities. If we 

refrain from updating the global statistics, we can combine 

the corruption and ranking module together. This way re-

ranking is done on-the-fly during corruption. 

 

5.3 Combination of QAO-Approx and SGS-Approx 

QAO-Approx and SGS-Approx improve the efficiency of 

robustness calculation by approximating different parts of 

the corruption and re-ranking process. Hence, we combine 

these two algorithms to further improve the efficiency of the 

query difficulty predication. 

 
6 PERFORMANCE EVALUATIONS 

6.1 QAO-Approx 

Fig.1 shows the results of using QAO-Approx on INEX 

(marked-up version of the Wikipedia corpus). We measure 

the prediction effectiveness for smaller valuesof N using 

average correlation score. The QAO-Approx algorithm 

delivers acceptable correlation scores and the corruption 

times of about 2 seconds for N = 10. Comparing to the 

results of SR Algorithm for N = 300 on INEX, the Pearson’s 

correlation score drops, because less noise is added by 

second and third level corruption. These results show the 

importance of these two levels of corruption. 

 

6.2 SGS-Approx 

Fig. 2 depicts the results of applying SGS-Approx on INEX. 

Since re-ranking is done on-the-fly during the corruption, 

SR-time is reported as corruption time only. As shown in 

Fig. 2, the efficiency improvement on the INEX dataset is 

slightly worse than QAO-Approx, but the quality 

(correlation score) remains high.  

 

6.3 Combination of QAO-Approx and SGS-Approx  

We can combine QAO-Approx and SGS-Approx algorithms 

to achieve better performance. Fig. 3presents the results of 

the combined algorithm for INEX databases. Since we use 

SGS-Approx, the SR-time consists only of corruption time. 

Our results show that the combination of two algorithms 

works more efficiently than either of them with the same 

value for N. 

 

6.4 SR algorithm  

 

The average computation time of SR score (SR-time) using 

SR Algorithm and compare it to the average query 

processing time (Q-time) using PRMSfor the queries in our 

query workloads. SR-time mainly consists of two parts: the 

time spent on corrupting K results and the time to re-rank the 

K corrupted results. We have reported SR-time using 
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(corruption time + re-rank time) format. We see that SR 

Algorithm incurs a considerable time overhead on the query 

processing. This overhead is higher for queries over the 

INEX dataset, because there are only two entity sets, (person 

and movie), and all query keywords in the query load occur 

in both entity sets. Every attribute value in to K entities will 

be corrupted due to the third level of corruption.  

 

 

 

 

 

Fig. 1.  Approximations in INEX dataset using QAO-Approx 

algorithm 

 

Fig. 2.  Approximations in INEX dataset using SGS-Approx 

algorithm 

 

Fig. 3.  Approximations in INEX dataset usingCombination 

of QAO and SGS algorithm 

       According to our performance study of QAO-Approx, 

SGS-Approx, both datasets, the combined algorithm delivers 

the best balance of improvement in efficiency and reduction 

in effectiveness for both datasets. On both datasets, the 

combined algorithm achieves high prediction accuracy (the 

Pearson’s correlation score about 0.5) with SR-time around 

1 second. Using the combined algorithm over INEX when 

the value of N is set to 20, the Pearson’s and Spearman’s 

correlation scores are 0.513 and 0.396 respectively and the 

time decreases to about 1 second. For SR Algorithm on 

INEX, when N decreases to 10, the Pearson’s correlation is 

0.537, but SR-time is over 9.8 seconds, which is not ideal. 

Thus, the combined algorithm is the best choice to predict 

the difficulties of queries both efficiently and effectively. 

 

7 CONCLUSIONS  

In this paper we are using keyword query interface technique 

for difficult keyword query predicting over databases. And 

we proposed algorithms to measure the degree of the 

difficulty over unstructured data using ranking robustness 

principle. Finally simulation results show that our algorithm 

efficiently predicts the difficulty of the query with higher 

accuracy. 
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