

SYSTEM INFORMATION AND DEDUPLICATIONDATA IN CLOUD

Mrs.C.SELVARATHI Mr.J.MOHAMMED NIVAZUDDIN, Mr.P.MANIGANDAN,

Assistant Professor / CSE, Final Year / CSE, Final Year / CSE,

M.Kumarasamy College of Engineering, M.Kumarasamy College of Engineering, M.Kumarasamy College of Engineering,

Karur –639 113 Karur – 639 113. Karur–639113.

selvarathic.cse@mkce.ac.in pappunivaz@gmail.com pmanigandancs05@gmail.com

Abstract--Cloud computing technology develops during the last decade, which benefits in sparing

efforts on heavy data maintenance and management.Nevertheless, since the outsourced cloud storage is

not fully trustworthy.It raises security concerns on how to realize data deduplication in cloud while

achieving integrity auditing.Specifically, aiming at achieving both data integrity and deduplication in

cloud.We propose secure systems, namely SecCloud and SecCloud+

 Index Terms--Cloud computing,Integrityauiditing,SecCloud and SecCloud+

 1 INTRODUCTION

Cloud storage is a model of networked enterprise

storage where data is stored in virtualized pools of

storage which are generally hosted by third parties.

Cloud storage provides customers with benefits,

ranging from cost saving and simplified

convenience, to mobility opportunities and scalable

service.

Even though cloud storage system has been widely

adopted, it fails to accommodate some important

emerging needs such as the abilities of auditing

integrity of cloud files by cloud clients and

detecting duplicated files by cloud server.

In this paper, aiming at achieving data integrity and

dedu-plication in cloud, we propose two secure

systems namely SecCloud and SecCloud
+
.

2 RELATED WORK

Since our work is related to both integrity auditing

and secure deduplication, we review the works in

both areas in the following subsections,

respectively.

2.1 Integrity Auditing

The definition of provable data possession (PDP)

was introduced by Atenieseetal.for assuring that

the cloud servers possess the target files without

retrieving or downloading the whole data.

Essentially, PDP is a probabilistic proof protocol

by sampling a random set of blocks and asking the

servers to prove that they exactly possess these

blocks, and the verifier only maintaining a small

amount of metadata is able to perform the integrity

checking. After Ateniese et al.’s proposal, several

works concerned on how to realize PDP on

dynamic scenario: Ateniese et al.proposed a

dynamic PDP schema but without insertion

operation; Erway et al. improved Ateniese et al.’s

work and supported insertion by introducing

authenticated flip table; A similar work has also

been contributed.Nevertheless, these proposals

suffer from the computational overhead for tag

generation at the client. To fix this issue, Wang et

al proposed proxy PDP in public clouds. Zhu et al

proposed the cooperative PDP in multi-cloud

storage.

Another line of work supporting integrity auditing

is proof of retrievability (POR). Compared with

126

PDP, POR not merely assures the cloud servers

possess the target files, but also guarantees their

full recovery. In, clients apply erasure codes and

generate authenticators for each block for

verifiability and retrievability. In order to achieve

efficient data dynamics, Wang et al. improved the

POR model by manipulating the classic Merkle

hash tree construction for block tag authentication.

Xu and Chang proposed to improve the POR

schema in with polynomial commitment for

reducing communication cost.

Stefanovetal.proposed a POR protocol over

authenticated file system subject to frequent

changes. Azraoui et al. combined the privacy-

preserving word search algorithm with the

insertion in data segments of randomly generated

short bit sequences, and developed a new POR

protocol. Li et al. considered a new cloud storage

architecture with two independent cloud servers for

integrity auditing to reduce the computation load at

client side. Recently, Li et al. Utilized the key-

disperse paradigm to fix the issue of a significant

number of convergent keys in convergent

encryption.

2.2 Secure Deduplication

Deduplication is a technique where the server

stores only a single copy of each file, regardless of

how many clients asked to store that file, such that

the disk space of cloud servers as well as network

bandwidth are saved. However, trivial client side

deduplication leads to the leakage of side channel

information. For example, a server telling a client

that it need not send the file reveals that some other

client has the exact same file, which could be

sensitive information in some case.

In order to restrict the leakage of side channel

information, Halevi et al.Introduced the proof of

ownership protocol which lets a client efficiently

prove to a server that that the client exactly holds

this file. Several proof of ownership protocols

based on the Merkle hash tree are proposed to

enable secure client-side deduplication. Pietro and

Sorniottiproposed an efficient proof of ownership

scheme by choosing the projection of a file onto

some randomly selected bit-positions as the file

proof.

Another line of work for secure deduplication

focuses on the confidentiality of deduplicated data

and considers to make deduplication on encrypted

data. Ng et al.Firstly intro-duced the private data

deduplication as a complement of public data

deduplication protocols of Halevi et al. Convergent

encryption is a promising cryptographic primitive

for ensuring data privacy in deduplication. Bellare

et al formalized this primitive as message-locked

encryption, and explored its application in space-

efficient secure outsourced storage.

Abadietal.Further strengthened Bellare etal’s

security definitions by considering plaintext

distributions that may depend on the public

parameters of the schemas. Regarding the practical

implementation of convergent encryp-tion for

securing deduplication, Keelveedhi et al.Designed

the DupLESS system in which clients encrypt

under file-basedkeys derived from a key server via

an oblivious pseudorandom function protocol.

3 PRELIMINARY

3.1 Convergent Encryption

Convergent encryption provides data confiden-

tiality in deduplication. A user (or data owner)

derives a convergent key from the data content and

encrypts the data copy with the convergent key.

In addition, the user derives a tag for the data copy,

such that the tag will be used to detect duplicates.

Here, we assume that the tag correctness property

holds, i.e., if two data copies are the same, then

their tags are the same. Formally, a convergent

encryption scheme can be defined with four

primitive function.

• KeyGen(F) : The key generation algorithm

takes a file content F as input and outputs

the convergent key ckfof F

• Encrypt(ckF;F) : The encryption algorithm

takes the

• convergent key ckF and file content F as

input and outputs the ciphertextctF ;

• Decrypt(ckF; ctF) : The decryption

algorithm takes the convergent key ckF and

ciphertextctF as input and outputs the plain

file F;

• TagGen(F) : The tag generation algorithm

takes a file content F as input and outputs

the tag tagF of F. Notice that in this paper,

we also allow TagGen(·) to generate the

(same) tag from the corresponding

ciphertext.

4 SECCLOUD

In this section, we describe our proposed SecCloud

system. Specifically, we begin with giving the

system model of Sec-Cloud as well as introducing

the design goals for SecCloud. In what follows, we

illustrate the proposed SecCloud in detail

Fig. 1. SecCloud Architecture

A. System Model

Aiming at allowing for auditable and deduplicated

storage, we propose the SecCloud system. In the

SecCloud system, we have three entities:

• Cloud Clients have large data files to be

stored and rely on the cloud for data

maintenance and computation. They can be

either individual consumers or commercial

organizations;

• Cloud Servers virtualize the resources

according to the requirements of clients and

expose them as storage pools. Typically, the

cloud clients may buy or lease storage

capacity from cloud servers, and store their

individual data in these bought or rented

spaces for future utilization;

• Auditor which helps clients upload and audit

their out-sourced data maintains a

MapReduce cloud and acts like

a certificate authority. This assumption

presumes that the auditor is associated with a

pair of public and private keys. Its public key

is made available to the other entities in the

system.

The SecCloud system supporting file-level

deduplication includes the following three

protocols respectively highlighted by red, blue and

green in Fig. 1.

1) File Uploading Protocol:This protocol aims at

allowingclients to upload files via the auditor.

Specifically, the file uploading protocol includes

three phases:

• Phase 1(cloud client→cloud server): client

performsthe duplicate check with the cloud

server to confirm if such a file is stored in

cloud storage or not before uploading a file. If

there is a duplicate, another protocol called

Proof of Ownership will be run between the

client and the cloud storage server. Otherwise,

the following protocols (including phase 2

and phase 3) are run between these two

entities.

• Phase 2(cloud client→auditor): client uploads

files tothe auditor, and receives a receipt from

auditor.

• Phase 3 (auditor→cloud server): auditor

helps generatea set of tags for the uploading

file, and send them along with this file to

cloud server.

2) Integrity Auditing Protocol: It is an interactive

protocolfor integrity verification and allowed to be

initialized by any entity except the cloud server. In

this protocol, the cloud server plays the role of

prover, while the auditor or client works as the

verifier. This protocol includes two phases:

• Phase 1(cloud client/auditor→cloud server):

verifier(i.e., client or auditor) generates a set

of challenges and sends them to the prover

(i.e., cloud server).

• Phase 2(cloud server→cloud client/auditor):

based onthe stored files and file tags, prover

(i.e., cloud server) tries to prove that it exactly

owns the target file by sending the proof back

to verifier (i.e., cloud client or auditor).

At the end of this protocol, verifier outputs true

if the integrity verification is passed.

3) Proof of Ownership Protocol:

It is an interactive protocolinitialized at the cloud

server for verifying that the client exactly owns a

claimed file. This protocol is typically triggered

along with file uploading protocol to prevent the

leakage of side channel information. On the

contrast to integrity auditing protocol, in PoW the

cloud server works as verifier, while the client

plays the role of prover. This protocol also includes

two phases

• Phase 1 (cloud server→client): cloud server

generatesa set of challenges and sends them

to the client.

• Phase 2(client→cloud server): the client

responds withthe proof for file ownership,

and cloud server finally verifies the validity

of proof.

Our main objectives are outlined as follows.

• Integrity Auditing. The first design goal of

this work is to provide the capability of

verifying correctness of the remotely stored

data. The integrity verification further

requires two features: 1) public verification,

which al-lows anyone, not just the clients

originally stored the file, to perform

verification; 2) stateless verification, which is

able to eliminate the need for state

information maintenance at the verifier side

between the actions of auditing and data

storage.

• Secure Deduplication. The second design

goal of this work is secure deduplication. In

other words, it requires that the cloud server

is able to reduce the storage space by keeping

only one copy of the same file. Notice that,

regarding to secure deduplication, our

objective is distinguished from previous work

in that we propose a method for allowing both

deduplication over files and tags.

• Cost-Effective. The computational overhead

for provid-ing integrity auditing and secure

deduplication should not represent a major

additional cost to traditional cloud storage,

nor should they alter the way either uploading

or downloading operation.

5 SECCLOUD+

We specify that our proposed SecCloud system has

achieved both integrity auditing and file

deduplication. However, it cannot prevent the

cloud servers from knowing the content of files

having been stored. In other words, the

functionalities of integrity auditing and secure

deduplication are only imposed on plain files. In

this section, we propose SecCloud
+
, which allows

for integrity auditing and deduplication on

encrypted files.

5.1 System Model

Compared with SecCloud, our proposed SecCloud
+

in-volves an additional trusted entity, namely key

server, which is responsible for assigning clients

with secret key (according to the file content) for

encrypting files. This architecture is in line with

the recent work. But our work is distinguished with

the previous work by allowing for integrity

auditing on encrypted data.

SecCloud
+
 follows the same three protocols (i.e.,

the file uploading protocol, the integrity auditing

protocol and the proof of ownership protocol) as

with SecCloud. The only difference is the file

uploading protocol in SecCloud
+
 involves an

additional phase for communication between cloud

client and key server. That is, the client needs to

communicate with the key server to get the

convergent key for encrypting the uploading file

before the phase 2 in SecCloud.

Unlike SecCloud, another design goals of file

confidentiality is desired in SecCloud
+
 as follows.

• File Confidentiality. The design goal of file

confident accessing the content of files.

Specially, we require that the goal of file

confidentiality needs to be resistant to

“dictionary attack”. That is, even the

adversaries have pre-knowledge of the

“dictionary” which includes all the possible

files, they still cannot recover the target file.

6 SECURITY ANALYSIS

In this section, we attempt to analyze the security

of our proposed both schemes. Before this, we

firstly formalize the security definitions our

schemes aim at capturing.

6.1 Security Definitions

Based on the paradigm of SecCloud and

SecCloud
+
, we define the security definitions,

adapting to the integrity au-diting and secure

deduplication goals. Our both definitions capture

the philosophy of game-based definition.

Specifically, we define two games respectively for

integrity auditing and secure deduplication, and

both of the games are played by two players,

namely adversary and challenger. The adversary

(the role of which is worked by semi-honest cloud

server and cloud client respectively in integrity

auditing and secure deduplication definition) is

trying to achieve the goal condition explicitly

specified in the game. Having this intuition, we

give our security definitions as follows.

1.Integrity Auditing:An integrity auditing

protocol is soundif any cheating cloud server that

convinces the verifier that it is storing a file F is

actually storing this file. To capture this spirit, we

define its game based on Proof of Retrievability

(PoR).

The security model called Proof of Retrievability

(PoR) was introduced by Shacham and Waters’.

This security model captures the requirement for

integrity auditing, whose basic security goal is to

achieve proof of retrievability. In more details, in

this security model, if there exists an adversary

who can forge and generate any valid integrity

proofs for any file F with a non-negligible

probability, another simulator can be constructed

who is able to extract F with overwhelming

probability. The formal definition for the above

model can be given by the following game

between a challenger and an adversary A. Note that

in the following security game, the challenger

plays the role of auditing server while the

adversary A acts as the storage server.

• Setup Phase. The challenger runs the setup

algorithm with required security parameter

and other public pa-rameter as input. Then, it

generates the public and secret key pair (pk;

sk). The public key pk is forwarded to the

adversary A.

• Query phase. The adversary is allowed to

query the file upload oracle for any file F.

Then, the file with the correct tags are

generated and uploaded to the cloud storage

server. These tags can be publicly verified

with respect to the public key pk.

• Challenge Phase. A can adaptively send file F

to the file tag tag comes, C runs the integrity

verification protocol IntegrityVerify{A C(pk;

tag)} with A.

• Forgery. A outputs a file tag tag
′
 and the

description of a proverPt.

2) Secure Deduplication:Similarly, we can also

define agame between challenger and adversary for

secure dedupli-cation below. Notice that the game

for secure deduplication captures the intuition of

allowing the malicious client to claim it has a

challenge file F through colluding with all the

other clients not owning this file.

• Setup Phase. A challenge file F with fixed

length and minimum entropy (specified in

system parameter) is randomly picked and

given to the challenger. The challenger

continues to run a summary algorithm and

generate a summary sumF .

• Learning Phase. Adversary F can setup

arbitrarily many client accomplices not

exactly having F and have them to interact

with the cloud servers to try to prove the

ownership of file F. Notice that in the

learning phase, the cloud server plays as the

honest verifier with input sum sumF and the

accomplices could follow any arbitrary

protocol set by A.

7 CONCLUSION

Aiming at achieving both data integrity and

deduplication in cloud, we propose SecCloud and

SecCloud+.SecCoud enables secure deduplication

through introducing a Proof of Ownership protocol

and preventing the leakage of side channel

information in data deduplication.SecCloud+ is an

advanced construction motivated by the fact that

customers always want to encrypt their data before

uploading

REFERENCE

1. J. Li, X. Chen, M. Li, J. Li, P. Lee, and W.

Lou, “Secure deduplication with efficient

and reliable convergent key management,”

IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 6, pp.

1615–1625, June 2014

2. J. Li, X. Tan, X. Chen, and D. Wong, “An

efficient proof of retrievability with public

auditing in cloud computing,” in 5th

International Conference on Intelligent

Networking and Collaborative Systems

(INCoS), 2013, pp. 93–98

3. Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu,

“Cooperative provable data possession for

integrity verification in multicloud storage,”

IEEE Transactions on Parallel and

Distributed Systems, vol. 23, no. 12, pp.

2231- 2244, 2012.

4. G. Ateniese, R. Burns, R.

Curtmola, J. Herring, O. Khan, L.

Kissner, Z. Peterson, and D. Song,

“Remote data checking using provable

data possession,” ACM Trans. Inf. Syst.

Secur., vol. 14, no. 1, pp. 12:1–12:34,

2011

132

