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ABSTRACT 
 
  In this paper, the polynomial matrix 

multiplication (PMM) of polynomial vectors 
and/or polynomial matrices has been introduced. 
This method provides an improvement of the fast 
convolution technique to multiple-input multiple
output systems (MIMO). It is devoted to the 
hardware implementation of PMM. Hardware 
implementation of this method is achieved via 
partly systolic, field-programmable gate array 
(FPGA) with highly pipelined architecture. The 
architecture, which is scalable in terms of the 
order of the input polynomial matrices, Xilinx 
system generator tool has been used for 
designing. The application to sensor array signal 
processing strong decorrelation is highlighted. 
The results are presented to verify the capability 
and accuracy of the architecture.
proved that the proposed solution gives low 
execution times and the number FPGA resource 
is less. 
 

Index Terms: Field-programmable gate array 
(FPGA), SBR2P, polynomial matrix 
multiplication (PMM), polynomial matrix 
computations, Xilinx system generator tool.

 

I.INTRODUCTION

Polynomial matrices have been used for many 

years in the area of control. They play an important 

role in the realization of multivariable transfer 

functions associated with multiple-input multiple

output (MIMO) systems. Few years back they have 

become more widely used in the context of digital 

signal processing (DSP) and communications [21]. 

Broadband subspace decomposition [12], Typical 

areas of application include broadband adaptive 

sensor array processing [22], [23], MIMO 

communication channels [12] [25], and digital 

filter banks for sub band coding [24] or data 

compression [23]. 

A polynomial matrix is simply a matrix whose 

elements are polynomials. It may be viewed 
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I.INTRODUCTION 

Polynomial matrices have been used for many 

years in the area of control. They play an important 

role in the realization of multivariable transfer 

input multiple-

years back they have 

become more widely used in the context of digital 

signal processing (DSP) and communications [21]. 

Broadband subspace decomposition [12], Typical 

areas of application include broadband adaptive 

sensor array processing [22], [23], MIMO 

communication channels [12] [25], and digital 

filter banks for sub band coding [24] or data 

A polynomial matrix is simply a matrix whose 

elements are polynomials. It may be viewed 

equivalently, as a polynomial with matrix 

coefficients. In this paper, we will use the term 

polynomial to include Laurent polynomials which 

can include negative powers of the indeterminate 

variable. We denote a polynomial matrix in the 

indeterminate variable. 

 Numerical procedures have previously 

been developed for a range of polynomial matrix 

factorization and reduction operations such as the 

Smith–McMillan decomposition [22]. To date, 

however, very little attention seems to have been 

devoted to polynomial matrix techniques 

equivalent to the eigenvalue decomposit

(EVD) or singular value decomposition (SVD) for 

conventional matrices with scalar elements [11]. 

The development and implementation of such a 

technique is the subject of this paper. 

value decomposition of conventional Hermitian 

matrices plays a major role in DSP. For example, 

it is at the heart of the Karhunen

for optimal data compaction.  

 

II.FAST FOURIER TRANSFORM

 A fast Fourier transform

algorithm computes the discrete Fourier 

transform (DFT) of a sequence, or it’s 

inverse. Fourier analysis converts a signal from its 

original domain (often time or space) to a 

representation in the frequency domain

versa. As a result, it manages to reduce 

the complexity of computing the DFT from

which arises if one simply applies the definition of 

DFT, to O(nlogn), where  is the data size. Fast 

Fourier transforms are widely used for

applications in engineering, science, and 

mathematics.  

A. Cooley–Tukey algorithm

 The best known use of the Cooley

algorithm is to divide the transform into two pieces 

of size N/2 at each step, and is therefore limited to 

power-of-two sizes, but any factorization can be 

used in general (as was known to both Gauss and 

Cooley/Tukey). These are called 
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II.FAST FOURIER TRANSFORM 

Fourier transform (FFT) 

discrete Fourier 

(DFT) of a sequence, or it’s 

converts a signal from its 

original domain (often time or space) to a 

frequency domain and vice 

As a result, it manages to reduce 

of computing the DFT from O(n
2
), 

ply applies the definition of 

is the data size. Fast 

Fourier transforms are widely used for many 

in engineering, science, and 

Tukey algorithm 

The best known use of the Cooley–Tukey 

to divide the transform into two pieces 

/2 at each step, and is therefore limited to 

two sizes, but any factorization can be 

used in general (as was known to both Gauss and 

Cooley/Tukey). These are called the radix-
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2 and mixed radix cases, respectively (and other 

variants such as the split-radix FFT have their own 

names as well). Although the basic idea is recursive, 

most traditional implementations rearrange the 

algorithm to avoid explicit recursion. Also, because 

the Cooley–Tukey algorithm breaks the DFT into 

smaller DFTs, it can be combined arbitrarily with 

any other algorithm for the DFT. 

B. COMPUTATIONAL ISSUES 

1.BOUNDS ON COMPLEXITY AND 

OPERATION COUNTS 

 The interest is to prove lower bounds on 

the complexity and exact operation counts of fast 

Fourier transforms, and many open problems remain. 

It is not even rigorously proved whether DFTs truly 

require Ω(N log(N)) (i.e., order N log(N) or greater) 

operations, even for the simple case of power of two 

sizes.  In particular, the count of arithmetic 

operations is usually the focus of such questions, 

although actual performance on modern-day 

computers is determined by many other factors such 

as cache or CPU pipeline optimization. Christo 

Ananth et al. [9] proposed a system, Low Voltage 

Differential Signaling (LVDS) is a way to 

communicate data using a very low voltage swing 

(about 350mV) differentially over two PCB traces. It 

deals about the analysis and design of a low power, 

low noise and high speed comparator for a high 

performance Low Voltage Differential Signaling 

(LVDS) Receiver. The circuit of a Conventional 

Double Tail Latch Type Comparator is modified for 

the purpose of low-power and low noise operation 

even in small supply voltages. The circuit is 

simulated with 2V DC supply voltage, 350mV 

500MHz sinusoidal input and 1GHz clock 

frequency. LVDS Receiver using comparator as its 

second stage is designed and simulated in Cadence 

Virtuoso Analog Design Environment using GPDK 

180nm .By this design, the power dissipation, delay 

and noise can be reduced. 

2.ACCURACY 

 Even the "exact" FFT algorithms have 

errors when finite-precision floating-point arithmetic 

is used, but these errors are typically quite small; 

most FFT algorithms, e.g. Cooley–Tukey, have 

excellent numerical properties as a consequence of 

the pair wise structure of the algorithms. The upper 

bound on the relative error for the Cooley–Tukey 

algorithm is O (ε log N), compared to O (εN3/2
) for 

the naïve DFT formula, where ε is the machine 

floating-point relative precision. In fact, the root 

mean square (rms) errors are much better than these 

upper bounds, being only O (ε √log N) for Cooley–

Tukey and O (ε √N) for the naïve DFT (Schatzman, 

1996). In fixed-point arithmetic, the finite-precision 

errors accumulated by FFT algorithms are worse, 

with RMS errors growing as O (√N) for the Cooley–

Tukey algorithm (Welch, 1969). Moreover, even 

achieving this accuracy requires careful attention to 

scaling to minimize loss of precision, and fixed-point 

FFT algorithms involve rescaling at each 

intermediate stage of decompositions like Cooley–

Tukey. 

3.MULTIDIMENSIONAL FFTs 

 As defined in the multidimensional 

DFT article, the multidimensional DFT 

XK = ∑ ������(	/�)
	���
	��  (1) 

transforms an array xn with a d-dimensional vector of 

indices  n = (n1,….nd) by a set of d nested 

summations (over  nj = 0…Nj -1for each j), where 

the division n/N, defined as n/N = (n1/N1,..,nd/Nd), is 

performed element-wise. Equivalently, it is the 

composition of a sequence of d sets of one 

dimensional DFTs, performed along one dimension 

at a time (in any order).This compositional 

viewpoint immediately provides the simplest and 

most common multidimensional DFT algorithm, 

known as the row-column algorithm (after the two-

dimensional case, below). That is, one simply 

performs a sequence of one dimensional FFTs (by 

any of the above algorithms) first you transform 

along the n1 dimension, then along the n2 dimension, 

and so on. This method is easily shown to have the 

usual O (Nlog (N)) complexity, where N = N1 

.N2...Nd is the total number of data points 

transformed. In particular, there are N/N1 transforms 

of size N1, etcetera, so the complexity of the 

sequence of FFTs is 

�

��
O (N1logN1) +....+

�

��
O (NdlogNd) = O (N 

[logN1+…. + logNd]) = O (NlogN)     (2) 

 

 In two dimensions, the xk can be viewed as 

an n1Xn2matrix, and this algorithm corresponds to 

first performing the FFT of all the rows (resp. 

columns), grouping the resulting transformed rows 

(resp. columns) together as another n1Xn2 matrix, 

and then performing the FFT on each of the columns 

(resp. rows) of this second matrix, and similarly 

grouping the results into the final result matrix. 
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 In more than two dimensions, it is often 

advantageous for cache locality to group the 

dimensions recursively. For example, a three-

dimensional FFT might first perform two-

dimensional FFTs of each planar "slice" for each 

fixed n1, and then perform the one-dimensional FFTs 

along the n1 direction. More generally, 

an asymptotically optimal cache-oblivious algorithm 

consists of recursively dividing the dimensions into 

two groups (n1…nd/2) and (nd/2+1…nd) that are 

transformed recursively (rounding if d is not even) 

(see Frigo and Johnson, 2005).  

 Still, this remains a straightforward 

variation of the row-column algorithm that 

ultimately requires only a one-dimensional FFT 

algorithm as the base case, and still has O (Nlog (N)) 

complexity.  

C.A SUMMARY OF SOME BASIC FFT 

CONCEPTS 

1. REAL DATA PROCESSED BY A REAL 

FFT 

 If real data is being processed by a real fft 

algorithm then the complex output spectrum extends 

from n = 0 to n = N/2 (so, N/2 +1 data pairs are 

present, in total, of real/imaginary numbers). No data 

exists beyond this point (there are no frequency 

components with a negative frequency to deal with 

in this case). 

2.REAL DATA PROCESSED BY A 

COMPLEX FFT 

 When a complex fft algorithm is being 

used, the complex frequency data may fill the whole 

range from n = 0 to n = N -1. As with the case for 

real data, the frequency bins for n=0 to n= N/2 are 

for positive frequency content, but now negative 

frequency data fills the bins from n = N/2 to N-1. 

Because of symmetry in the frequency data, half of it 

is superfluous and can be discarded with no overall 

loss of information. This may be advantageous in 

that subsequent calculations are simplified. 

However, an inverse complex FFT cannot be used on 

the remaining frequency data, in order to recover a 

time domain waveform. Either a real IFFT has to be 

used for this purpose, or the missing data has to be 

reconstituted first. 

III. ALGORITHM FOR PMM 
 

  This section provides an algorithm for 

multiplication of polynomial matrices of the MIMO 

convolution technique, for which FPGA architecture 

is described. The algorithm proceeds by taking the 

FFT as an input polynomial matrices or vectors, and 

proceeds with the conventional matrix multiplication 

of FFT matrices (or vectors). Finally the IFFT of 

matrix products is taken. The proposed Matrix-

Matrix PMM algorithm shows computing the FFT of 

the input polynomial matrices, the matrix sequences 

produce of their real and imaginary components. The 

process ends with the IFFT of the matrix sequence 

resulting the output polynomial matrix. Note that the 

algorithm can also be used to polynomial matrix-

vector product computations, since a polynomial 

vector is a single-column or single-row polynomial 

matrix. 

 

 

IV. PROPOSED ARCHITECTURE  
 
A. HARDWARE IMPLEMENTATION OF 

POLYNOMIAL MATRIX  
 

In this section, we describe the hardware 

implementation of the fast MIMO convolution 

technique of PMM in the following steps. 
 

1) Initially, the FFT of the p×p two input 

polynomial matrices is computed. Row-by-

row input for the multiplier polynomial 

matrix, and on a column by column input for 

the multiplicand. The resulting matrix 

sequences, with real and imaginary 

components, are stored in similar sets of 

memory blocks allocated to each transformed 

polynomial matrix. Each memory block 

consists of two dual-port memories for 

imaginary and real components. All 

calculations of this step are done by two FFT 

blocks operating in parallel. 

2) The next step provides conventional 

multiplication of the similar elements of the 

two matrixes obtained, is explained in this 

section later. In this step, it takes two phases 

to complete during which an exclusive 

equation is produced for the computation of 

the complex matrix products. The results are 

thus stored into a second set of similar 

memory blocks; each consists of 2 dual-port 

memories. For this step, the first dual-port 

memory within each memory block is used. 

These computations are produced by a 2-D 

systolic array [24] comprised of p×p 

processing elements (PEs) especially designed 

for this purpose. 

3) The third step is similar to step 2; however, 

 during this time, the similar elements of 

theresulting two matrix sequences from the step1 are 
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multiplied to obtain the imaginary components of 

the matrix product. Therefore, in this step, two new 

exclusive equations are calculated respectively. 

Further, the results of this step are stored in the same 

memory block set as in step 2, but the second dual-

port memories are utilized in this case. The 

implementations of this step are also accomplished 

by the p×p systolic array as mentioned above after 

the completion of step 2. 

 Finally, the algorithm ends with the IFFT of 

the contents of the memory blocks produced by the 

outcomes of steps 2 and 3 to produce the output 

polynomial matrix product. The IFFT is applied to 

two memory blocks at a time in a specific order 

.These computations are performed by the two 

parallel FFT blocks as in step 1; however, this time, 

they are computed in inverse mode. The above four 

steps of the proposed hardware algorithm are 

sequentially calculated in a pipelined manner for the 

input polynomial matrices to obtain the maximum 

throughput value. 

 

B. POLYNOMIAL MATRIX ARCHITECTURE  
 

In this section, the highly pipelined partly systolic 

architecture implementing the hardware algorithm 

detailed in Section IV-A for 4 × 4 polynomial 

matrices, (i.e., p= 4). The FPGA architecture for 

PMM has been designed using the Xilinx system 

generator tool. It consists of the Data Path block that 

computes data processing operations with a control 

unit (i.e., Main_FSM block), incorporating with a 

finite-state machine (FSM), which regulates 

interaction between the Data Path block and the data 

itself. The Data Path block, shown in Fig. 2, consists 

of two sets of memory blocks and two main blocks, 

namely FFT_IFFT and Systolic Array blocks, 

sequentially implementing the four major steps of 

the fast MIMO convolution technique. Outputs of 

the FFT_IFFT block are stored in the first set of 

memory blocks such as MemI1, MemI2, MemI3, 

MemI4, MemI5, MemI6, MemI7, and MemI8. 

On the other hand, results of the Systolic Array 

block are stored into the second set of memory 

blocks such as MemO1, MemO2, MemO3, and 

MemO4. As mentioned above, each memory block 

consists of two dual-port memories for storing 

imaginary and real values. An important aspect of 

the proposed architecture is it does not have any 

high dependency on the order of the input 

polynomial matrices. Only some specific parameter 

values as well as size of the dual-port memories, 

throughout the architecture need to be modified 

when the order of the input matrices is changed. 

Further, Xilinx uses fixed-point data type throughout 

our architecture, where rounding and saturation have 

been chosen as overflow and quantization options 

respectively, for all arithmetical units. e.g., 

multipliers and adders, to improve the accuracy of 

the design. 

1) FFT_IFFT BLOCK:The inner structure of the 

FFT_IFFT block is shown in Fig. 3. It mainly 

consists of two FFT blocks operating 

simultaneously, (i.e., FFT 7.1 modules [25]), which 

can be operated in forward or inverse mode 

depending on the fwd-inv signal. The block also 

consists of four multiplexers (as well as a number of 

other miscellaneous blocks) to select one input 

signal from the corresponding set of three data 

signals and provide it accordingly to the xn_re or 

xn_im ports of the ft blocks, which are for inputting 

real and imaginary values, respectively. 

The FFT_IFFT block has two modes of 
operation. In the first mode, the FFT blocks perform 
the FFT on each polynomial element of multiplier 
and multiplicand matrices in parallel, respectively. In 
effect, the transformation is along the 3

rd
 dimension 

of the polynomial matrix. Complex row vector 
sequences resulting from the FFT of each 
polynomial element multiplier matrix are stored into 
the MemI1, MemI2, MemI3, and MemI4 memory 
blocks respectively. Whereas complex column 
vector sequences resulting from the FFT of each 
polynomial element column for the multiplicand 
matrix are kept in the MemI5, MemI6, MemI7, and 
MemI7 blocks respectively in the same way.  

In the second mode, an FFT block performs the 

IFFT of the data of MemO1, MemO2, MemO3, and 

MemO4 provided by the Systolic Array block, to 

obtain the architecture output: polynomial matrix 

product. The IFFT process is sequentially applied to 

the read complex data from the MemO1 and MemO2 

blocks from the respective FFT blocks in parallel, 

and then the complex data from the blocks MemO3 

and MemO4 are,   processed by the FFT blocks 

respectively, at the same time. Note that multiplexers 

within the FFT_IFFT block architecture the data 

from the memory blocks to the FFT blocks are 

directed by multipliers, accordingly. The operations 

within this block are controlled by the Main FSM 

block.  
2) SYSTOLIC ARRAY BLOCK:The 

Systolic Array block is at the center of our data path 

architecture (Fig. 1), containing a 2-D systolic array 
composed of 4 × 4 identical PEs, namely PE00, 

PE01, PE33, as shown in Fig. 4. The work of the 

block is to compute the matrix product of two 
(complex) polynomial matrices. This is split into two 

operations: computation of imaginary component 
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(imCfft) and real component (reCf ft) of the matrix 

product in Fourier domain. In each operation, the 

two matching elements of the matrix, from the 

FFT_IFFT block, are multiplied. These two 

operations are computed independently in each PE 

within two consecutive cycles.The process in this 

block starts by accessing blocks MemI1, MemI2, 

MemI3, MemI4, MemI5, MemI6, MemI7, and 

MemI8 to obtain the stored transformed matrix 

sequences.  
The complex data thus obtained are then 

shifted into the systolic array in a sequential manner, 
By adopting the following scheme: the polynomial 

elements on each row of the multiplier matrix are 
shifted into the corresponding row of the systolic 
array simultaneously, whereas transformed 

sequences for the polynomial elements on each 
column of the multiplicand matrix are shifted into 
the corresponding column of the systolic array 
simultaneously. Depending on the operating cycle, 
either the real or imaginary components of the 
multiplicand and multiplier matrices are transferred 
into the systolic array. During the 1st phase of the 
first cycle, real components are shifted in, whereas 
imaginary components are shifted in during the 
second phase, where the multiplier matrix are 
multiplied by (−1); the 1st

 phase of the second cycle 
requires the shifting of real and imaginary 
components of the multiplier and multiplicand 
matrices, respectively, whereas, the second phase of 
the second cycle, the inverse operation is performed.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These PEs work independent of each other, and 

works parallel as the data stream enters the PE 

during each cycle. At the end of the two consecutive 

cycles, each PEij respectively will contain the 

corresponding set of imCfft [i, j, t], (i.e., imaginary 

matrix product components) and reCfft[i,j,t], (i.e., 

real matrix product components) in one of the local 

memories for t= 1, 2. . . N. These components are 

shifted out and stored in two dual-port memories 

named as MemO1, MemO2, MemO3, and MemO4 

correspondingly. 

 The four sets of PEs are used to facilitate 

the shifting process. The first set includes only PE00; 

the second set includes PE01, PE10, and PE11; the 

third set includes PE02, PE12, PE21, PE22, and 

PE20; and the last and largest set includes PE03, 

PE13, PE23, PE31, PE32, PE33, and PE30. Each of 

these four sets independently used for shifting the 

data within the linked PEs, at last shifts into the 

designated memory blocks mentioned above. This 

happens when each PE constituting the set ends 

within the cycle. Note that the first dual port memory 

within the memory blocks is filled with the real 

values produced during the first cycle in the systolic 

array, whereas the second one is utilized for utilizing 

the imaginary values computed during the 2
nd

 Cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG.1.ARCHITECTURE OF THE PROPOSED METHOD 
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FIG.2.SYSTOLIC ARRAY BLOCK 
 

3) PES:In Fig. 5 the inner structure of 

identical PEs is shown. It is mostly consists of an 

addressable shift register, an adder, a multiplier, a 

multiplexer, two FIFO blocks, (i.e., FIFOa and 

FIFOb), and Control Unit block within the specific 

PE. PEs also contains a number of pipeline registers, 

simple logic gates, and other miscellaneous blocks. 

FIFOa and FIFOb within PEs used to transmit either 

real or imaginary components of the multiplier and 

multiplicand matrices respectively within current 

operation cycle, the buffers are simultaneously 

accessed, and then the read data are multiply and 

accumulated in accordance with the respective 

equations of 

 

 

 

 

 

reCf f t [i, j, t] = reCf f t [i, j, t] + reHf f t [i, k,t] 

×reRf f t [k, j, t]   (15)  

 

reCf f t [i, j, t] = reCf f t [i, j, t] − imHf f t [i, k, t] 

×imRf f t [k, j, t]  (16) 

 

For t = 1, 2. . . N and k = 1, 2. . . P, by the multiplier 

and adder (Fig. 5); meanwhile the addressable shift 

register is used as an accumulator that 

continuouslyshifts the output of the adder in through 

the multiplexer and shifts it out into one input port of 

the 

Adder through a delay Element. Eventually, the 

addressable shift register will have, at the end of the 

cycle, the set of the matrix products, (i.e., reCf f t) for 

the particular indices i, j indicated by the position of 

the PE within the systolic array blocks. The 2
nd

 cycle 

of operation is similar to the 1
st
 cycle; however, the 

equations of 

 

imCf f t [i, j, t] = imCf f t [i, j, t] + reHf f t [i, k, t] 

×imRf f t [k, j, t]  (17) 

 

imCf f t [i, j, t] = imCf f t [i, j, t] + imHf f t [i, k, t] 

×reRf f t [k, j, t]   (18) 

 

Are implemented for t = 1, 2. . . N and k = 1, 2. . . P 

During the 1
st
 and 2

nd
 phases, respectively, to 

compute the set of imaginary components of the 

matrix products, (i.e., imCf f t) of the same index 

point. The addressable shift registers in the same PE 

set gets connected to each other through the Shafto 

cycle. This enables the out shifting of data contained 

within the addressable shift registers of PEs 
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FIG.3.TOP-LEVEL BLOCK DIAGRAM FOR PMM

V. RESULTS 

 
The architecture for performing the PMM, 

whose block diagram is shown in Fig. 3, was 

implemented on the Virtex-5 Open SPARC platform 

[26], which is a general-purpose development board 

with XC5VLX110T Xilinx Virtex-5 FPGA chip [27]. 

As described before, our architecture was developed 

using the Xilinx system generator tool, which was 

then synthesized, placed, mapped and routed by the 

Xilinx ISE 14.5 tool. FPGA-in-the-loop hardware co 

simulation method was used to verify the correct 

operation of the FPGA design. To show the 

performance of the proposed PMM algorithm 

implementation, we represent the results from the 

simulation defined in Section V-A. Simulations on 

the hardware accuracy of the utilized fast MIMO 

convolution technique are explained, whereas the 

amount of resources consumed in the FPGA chip and 

timing performance of the hardware design are 

presented. 

 

A. HARDWARE TIMING PERFORMANCE 

AND RESOURCE UTILIZATION 

  

 To analyze the complexity of calculating the 

PMMs, theensemble was simulated on a PC with 8-

GB RAM running at 64-bit operating system and 

2.67 GHz Intel core i5processor.We show the 

average CPU access time taken by ourproposed 

algorithm running in MATLAB versus FFT lengthfor 

matrix–matrix PMM, and theMIMO filtering. Also 

includedare the MATLAB execution times required 

by the equivalenttime-domain MIMO convolution 

routines for comparison.As expected, the proposed 

PMM algorithm for matrix–matrix is faster than the 

time-domain counterpart. The result isthe upward 

trend of the curves, for N = 64. However, there is, on 

average of six fold drop in this speedup, for N = 512. 

Note that, the CPU access time by our algorithm for 

matrix–vector PMM is greater than for time-domain 

MIMO convolution for large N. The reduced run-

times achieved by our algorithm on PC shows its 

applicability to real-time problems.  

In Table I, we demonstrated the fixed 

number of clock cycles required by our FPGA 

design, for example N ∈ {64, 128, 256, 512}, for the 

computation of the polynomial matrix product. It also 

shows the effective number of clock cycles for each 

N, which is the number of cycles after which a new 

set of polynomial matrices input populated into the 

architecture. As observed, the number of clock cycles 

required by our FPGA architecture increases as N is 

doubled. In the Tables II and III the access time 

consumed by the FPGA design versus Nis given, 

which is calculated based on the total number of 

clock cycles required at an operating frequency of 

100 MHz the speed of the proposed FPGA design is 

compared with equivalent MATLAB code execution 

time on PC. It also shows the average CPU time 

execution,for all N. The speed up performance by our 

architecture over MATLAB execution is more than 

an order of magnitude, which is suitable for real-time 

applications. The maximum throughput achieved by 

our design for all Nvalues, based on the effective 

number of required clock cycles, in mega word per 

second, in both imaginary and real component of the 

polynomial matrix products shown in Table VI. 

Notice that changes in N have a little effect on the 

throughput, which is due to the pipelined nature of 

the proposed architecture. 

 

TABLE I 

NUMBER OF CLOCK CYCLES REQUIRED BY OUR FPGA DESIGN 
 

 
 

TABLE II 

FPGA VERSUS CPU TIME REQUIREMENTS FOR 

THEPOLYNOMIALMATRIX–VECTORMULTIPLICATIONWITH 

FAST MIMO CONVOLUTION 

 

 

N CPU FPGA SPEED 

 

64 430.32 32.15 13.4 

 

128 701.83 62.45 11.2 

 

256 1674.7 122.73 13.7 

 

512 3169.3 243.27 13.0 

 
 

TABLE III 

FPGA VERSUS CPU TIME REQUIREMENTS FOR 

THEPOLYNOMIALMATRIX–MATRIX MULTIPLICATION 

WITHFASTMIMO CONVOLUTION 

 

 

N CPU FPGA SPEED-UP 

64 927.59 32.15 28.9 

N No of cycle No of effective cycles 

 

64 3215 3006 

 

128 6245 5897 

 

256 12273 11663 

 

512 24327 23194 
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128 1584.1 62.45 22.3 

512 2740.2 243.27 25.4 

256 5245.4 122.73 21.6 
 

 

TABLE IV 

LOGICAL COMPARISION 
 

 

TABLE V 

FPGA RESOURCE UTILIZATIONS FOR THE PROPOSED 

ARCHITECTURE 

 

 

 USED AVAIL

ABLE 

UTILIZATION 

 N=64 N=128  N=64 N=128 

NO.SLICE 

REGISTERS 

19,349 25,847 69,120 27% 37% 

NO.SLICE 

LUTS 

20,847 27,907 69,120 30% 40% 

NO USED 

AS LOGIC 

16,814 22,191 69,120 24% 32% 

NO.USED 

AS  

SHIFTREG 

3,676 4,988 17,920 20% 27% 

NO.OCCUPI

ED SLICES 

7,226 9,323 17,920 41% 53% 

NO.BLOCK 

RAM/FIFO 

64 65 148 42% 43% 

NO.USING 

BLOCK 

RAM ONLY 

31 33 63,64 49% 51% 

NO.USING 

FIFO ONLY 

32 32 63,64 51% 49% 

TOTAL 

MEMORY 

USED 

2,160 2,304 5,328 40% 43% 

 

 

TABLE VI 

THROUGHPUT ATTAINABLE BY OUR ARCHITECTURE 

 

N THROUGHPUT(MW/s) 

64 69.63 

128 69.63 

256 70.21 

512 70.62 

 
 

 

 

 

VI.CONCLUSION 
 

 In this paper, we have demonstrated 

FPGAarchitecture for the implementation of PMM. 

The proposed architecture is based on the application 

ofthe fast convolution technique to MIMO systems, 

which exploits the FFT. A main contribution of this 

paper is the introduction of a partly systolic highly 

pipelined architecture for the realization of fast 

MIMO convolution. The proposed architecture 

consumes limited FPGA resources and has a little 

dependency on the input polynomial matrices order, 

which makes for a scalable design. Specifically, 

built-in FIFOs and the sizes of the block RAMs as 

well as the transform length of the FFT blocks, 

should be modified for the input matrix order. 

Further, the FFT blocks transform length is, 

enhancing both the scalability and adaptability 

runtime configurable.The data widths used in the 

current implementation are reduced by the limited 

number of FPGA chip. However, for larger FPGA 

specialized for DSP implementations are employed, 

the data widths are increased to achieve 

higheraccuracy. In this case, detailed investigations 

in determining the optimum data width versus 

accuracy in multiplication 
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