

4X4 POLYNOMIAL MATRIX MULTIPLICATION

PG SCHOLAR, ASSISTANT PROFESSOR

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

Priyar473@gmail.com

ABSTRACT

 In this paper, the polynomial matrix

multiplication (PMM) of polynomial vectors
and/or polynomial matrices has been introduced.
This method provides an improvement of the fast
convolution technique to multiple-input multiple
output systems (MIMO). It is devoted to the
hardware implementation of PMM. Hardware
implementation of this method is achieved via
partly systolic, field-programmable gate array
(FPGA) with highly pipelined architecture. The
architecture, which is scalable in terms of the
order of the input polynomial matrices, Xilinx
system generator tool has been used for
designing. The application to sensor array signal
processing strong decorrelation is highlighted.
The results are presented to verify the capability
and accuracy of the architecture.
proved that the proposed solution gives low
execution times and the number FPGA resource
is less.

Index Terms: Field-programmable gate array
(FPGA), SBR2P, polynomial matrix
multiplication (PMM), polynomial matrix
computations, Xilinx system generator tool.

I.INTRODUCTION

Polynomial matrices have been used for many

years in the area of control. They play an important

role in the realization of multivariable transfer

functions associated with multiple-input multiple

output (MIMO) systems. Few years back they have

become more widely used in the context of digital

signal processing (DSP) and communications [21].

Broadband subspace decomposition [12], Typical

areas of application include broadband adaptive

sensor array processing [22], [23], MIMO

communication channels [12] [25], and digital

filter banks for sub band coding [24] or data

compression [23].

A polynomial matrix is simply a matrix whose

elements are polynomials. It may be viewed

All Rights Reserved © 2016 IJARTET

POLYNOMIAL MATRIX MULTIPLICATION ON FPGA

R.DHANA PRIYA
1
, D.DEVI

2

PG SCHOLAR, ASSISTANT PROFESSOR

DEPARTMENT OF ECE

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

Priyar473@gmail.com
1
, devi@skcet.ac.in

2

In this paper, the polynomial matrix
multiplication (PMM) of polynomial vectors
and/or polynomial matrices has been introduced.
This method provides an improvement of the fast

input multiple-
evoted to the

hardware implementation of PMM. Hardware
implementation of this method is achieved via

programmable gate array
(FPGA) with highly pipelined architecture. The
architecture, which is scalable in terms of the

input polynomial matrices, Xilinx
system generator tool has been used for
designing. The application to sensor array signal
processing strong decorrelation is highlighted.
The results are presented to verify the capability
and accuracy of the architecture. The result
proved that the proposed solution gives low
execution times and the number FPGA resource

programmable gate array
(FPGA), SBR2P, polynomial matrix
multiplication (PMM), polynomial matrix

enerator tool.

I.INTRODUCTION

Polynomial matrices have been used for many

years in the area of control. They play an important

role in the realization of multivariable transfer

input multiple-

years back they have

become more widely used in the context of digital

signal processing (DSP) and communications [21].

Broadband subspace decomposition [12], Typical

areas of application include broadband adaptive

sensor array processing [22], [23], MIMO

communication channels [12] [25], and digital

filter banks for sub band coding [24] or data

A polynomial matrix is simply a matrix whose

elements are polynomials. It may be viewed

equivalently, as a polynomial with matrix

coefficients. In this paper, we will use the term

polynomial to include Laurent polynomials which

can include negative powers of the indeterminate

variable. We denote a polynomial matrix in the

indeterminate variable.

 Numerical procedures have previously

been developed for a range of polynomial matrix

factorization and reduction operations such as the

Smith–McMillan decomposition [22]. To date,

however, very little attention seems to have been

devoted to polynomial matrix techniques

equivalent to the eigenvalue decomposit

(EVD) or singular value decomposition (SVD) for

conventional matrices with scalar elements [11].

The development and implementation of such a

technique is the subject of this paper.

value decomposition of conventional Hermitian

matrices plays a major role in DSP. For example,

it is at the heart of the Karhunen

for optimal data compaction.

II.FAST FOURIER TRANSFORM

 A fast Fourier transform

algorithm computes the discrete Fourier

transform (DFT) of a sequence, or it’s

inverse. Fourier analysis converts a signal from its

original domain (often time or space) to a

representation in the frequency domain

versa. As a result, it manages to reduce

the complexity of computing the DFT from

which arises if one simply applies the definition of

DFT, to O(nlogn), where is the data size. Fast

Fourier transforms are widely used for

applications in engineering, science, and

mathematics.

A. Cooley–Tukey algorithm

 The best known use of the Cooley

algorithm is to divide the transform into two pieces

of size N/2 at each step, and is therefore limited to

power-of-two sizes, but any factorization can be

used in general (as was known to both Gauss and

Cooley/Tukey). These are called

44

ON FPGA

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY
1, 2

equivalently, as a polynomial with matrix

this paper, we will use the term

polynomial to include Laurent polynomials which

can include negative powers of the indeterminate

a polynomial matrix in the

Numerical procedures have previously

or a range of polynomial matrix

factorization and reduction operations such as the

McMillan decomposition [22]. To date,

however, very little attention seems to have been

devoted to polynomial matrix techniques

equivalent to the eigenvalue decomposition

(EVD) or singular value decomposition (SVD) for

conventional matrices with scalar elements [11].

The development and implementation of such a

technique is the subject of this paper. The Eigen

value decomposition of conventional Hermitian

a major role in DSP. For example,

it is at the heart of the Karhunen–Loeve transform

II.FAST FOURIER TRANSFORM

Fourier transform (FFT)

discrete Fourier

(DFT) of a sequence, or it’s

converts a signal from its

original domain (often time or space) to a

frequency domain and vice

As a result, it manages to reduce

of computing the DFT from O(n
2
),

ply applies the definition of

is the data size. Fast

Fourier transforms are widely used for many

in engineering, science, and

Tukey algorithm

The best known use of the Cooley–Tukey

to divide the transform into two pieces

/2 at each step, and is therefore limited to

two sizes, but any factorization can be

used in general (as was known to both Gauss and

Cooley/Tukey). These are called the radix-

45

All Rights Reserved © 2016 IJARTET

2 and mixed radix cases, respectively (and other

variants such as the split-radix FFT have their own

names as well). Although the basic idea is recursive,

most traditional implementations rearrange the

algorithm to avoid explicit recursion. Also, because

the Cooley–Tukey algorithm breaks the DFT into

smaller DFTs, it can be combined arbitrarily with

any other algorithm for the DFT.

B. COMPUTATIONAL ISSUES

1.BOUNDS ON COMPLEXITY AND

OPERATION COUNTS

 The interest is to prove lower bounds on

the complexity and exact operation counts of fast

Fourier transforms, and many open problems remain.

It is not even rigorously proved whether DFTs truly

require Ω(N log(N)) (i.e., order N log(N) or greater)

operations, even for the simple case of power of two

sizes. In particular, the count of arithmetic

operations is usually the focus of such questions,

although actual performance on modern-day

computers is determined by many other factors such

as cache or CPU pipeline optimization. Christo

Ananth et al. [9] proposed a system, Low Voltage

Differential Signaling (LVDS) is a way to

communicate data using a very low voltage swing

(about 350mV) differentially over two PCB traces. It

deals about the analysis and design of a low power,

low noise and high speed comparator for a high

performance Low Voltage Differential Signaling

(LVDS) Receiver. The circuit of a Conventional

Double Tail Latch Type Comparator is modified for

the purpose of low-power and low noise operation

even in small supply voltages. The circuit is

simulated with 2V DC supply voltage, 350mV

500MHz sinusoidal input and 1GHz clock

frequency. LVDS Receiver using comparator as its

second stage is designed and simulated in Cadence

Virtuoso Analog Design Environment using GPDK

180nm .By this design, the power dissipation, delay

and noise can be reduced.

2.ACCURACY

 Even the "exact" FFT algorithms have

errors when finite-precision floating-point arithmetic

is used, but these errors are typically quite small;

most FFT algorithms, e.g. Cooley–Tukey, have

excellent numerical properties as a consequence of

the pair wise structure of the algorithms. The upper

bound on the relative error for the Cooley–Tukey

algorithm is O (ε log N), compared to O (εN3/2
) for

the naïve DFT formula, where ε is the machine

floating-point relative precision. In fact, the root

mean square (rms) errors are much better than these

upper bounds, being only O (ε √log N) for Cooley–

Tukey and O (ε √N) for the naïve DFT (Schatzman,

1996). In fixed-point arithmetic, the finite-precision

errors accumulated by FFT algorithms are worse,

with RMS errors growing as O (√N) for the Cooley–

Tukey algorithm (Welch, 1969). Moreover, even

achieving this accuracy requires careful attention to

scaling to minimize loss of precision, and fixed-point

FFT algorithms involve rescaling at each

intermediate stage of decompositions like Cooley–

Tukey.

3.MULTIDIMENSIONAL FFTs

 As defined in the multidimensional

DFT article, the multidimensional DFT

XK = ∑ ������(/�)	���
	�� (1)

transforms an array xn with a d-dimensional vector of

indices n = (n1,….nd) by a set of d nested

summations (over nj = 0…Nj -1for each j), where

the division n/N, defined as n/N = (n1/N1,..,nd/Nd), is

performed element-wise. Equivalently, it is the

composition of a sequence of d sets of one

dimensional DFTs, performed along one dimension

at a time (in any order).This compositional

viewpoint immediately provides the simplest and

most common multidimensional DFT algorithm,

known as the row-column algorithm (after the two-

dimensional case, below). That is, one simply

performs a sequence of one dimensional FFTs (by

any of the above algorithms) first you transform

along the n1 dimension, then along the n2 dimension,

and so on. This method is easily shown to have the

usual O (Nlog (N)) complexity, where N = N1

.N2...Nd is the total number of data points

transformed. In particular, there are N/N1 transforms

of size N1, etcetera, so the complexity of the

sequence of FFTs is

�

��
O (N1logN1) +....+

�

��
O (NdlogNd) = O (N

[logN1+…. + logNd]) = O (NlogN) (2)

 In two dimensions, the xk can be viewed as

an n1Xn2matrix, and this algorithm corresponds to

first performing the FFT of all the rows (resp.

columns), grouping the resulting transformed rows

(resp. columns) together as another n1Xn2 matrix,

and then performing the FFT on each of the columns

(resp. rows) of this second matrix, and similarly

grouping the results into the final result matrix.

46

All Rights Reserved © 2016 IJARTET

 In more than two dimensions, it is often

advantageous for cache locality to group the

dimensions recursively. For example, a three-

dimensional FFT might first perform two-

dimensional FFTs of each planar "slice" for each

fixed n1, and then perform the one-dimensional FFTs

along the n1 direction. More generally,

an asymptotically optimal cache-oblivious algorithm

consists of recursively dividing the dimensions into

two groups (n1…nd/2) and (nd/2+1…nd) that are

transformed recursively (rounding if d is not even)

(see Frigo and Johnson, 2005).

 Still, this remains a straightforward

variation of the row-column algorithm that

ultimately requires only a one-dimensional FFT

algorithm as the base case, and still has O (Nlog (N))

complexity.

C.A SUMMARY OF SOME BASIC FFT

CONCEPTS

1. REAL DATA PROCESSED BY A REAL

FFT

 If real data is being processed by a real fft

algorithm then the complex output spectrum extends

from n = 0 to n = N/2 (so, N/2 +1 data pairs are

present, in total, of real/imaginary numbers). No data

exists beyond this point (there are no frequency

components with a negative frequency to deal with

in this case).

2.REAL DATA PROCESSED BY A

COMPLEX FFT

 When a complex fft algorithm is being

used, the complex frequency data may fill the whole

range from n = 0 to n = N -1. As with the case for

real data, the frequency bins for n=0 to n= N/2 are

for positive frequency content, but now negative

frequency data fills the bins from n = N/2 to N-1.

Because of symmetry in the frequency data, half of it

is superfluous and can be discarded with no overall

loss of information. This may be advantageous in

that subsequent calculations are simplified.

However, an inverse complex FFT cannot be used on

the remaining frequency data, in order to recover a

time domain waveform. Either a real IFFT has to be

used for this purpose, or the missing data has to be

reconstituted first.

III. ALGORITHM FOR PMM

 This section provides an algorithm for

multiplication of polynomial matrices of the MIMO

convolution technique, for which FPGA architecture

is described. The algorithm proceeds by taking the

FFT as an input polynomial matrices or vectors, and

proceeds with the conventional matrix multiplication

of FFT matrices (or vectors). Finally the IFFT of

matrix products is taken. The proposed Matrix-

Matrix PMM algorithm shows computing the FFT of

the input polynomial matrices, the matrix sequences

produce of their real and imaginary components. The

process ends with the IFFT of the matrix sequence

resulting the output polynomial matrix. Note that the

algorithm can also be used to polynomial matrix-

vector product computations, since a polynomial

vector is a single-column or single-row polynomial

matrix.

IV. PROPOSED ARCHITECTURE

A. HARDWARE IMPLEMENTATION OF

POLYNOMIAL MATRIX

In this section, we describe the hardware

implementation of the fast MIMO convolution

technique of PMM in the following steps.

1) Initially, the FFT of the p×p two input

polynomial matrices is computed. Row-by-

row input for the multiplier polynomial

matrix, and on a column by column input for

the multiplicand. The resulting matrix

sequences, with real and imaginary

components, are stored in similar sets of

memory blocks allocated to each transformed

polynomial matrix. Each memory block

consists of two dual-port memories for

imaginary and real components. All

calculations of this step are done by two FFT

blocks operating in parallel.

2) The next step provides conventional

multiplication of the similar elements of the

two matrixes obtained, is explained in this

section later. In this step, it takes two phases

to complete during which an exclusive

equation is produced for the computation of

the complex matrix products. The results are

thus stored into a second set of similar

memory blocks; each consists of 2 dual-port

memories. For this step, the first dual-port

memory within each memory block is used.

These computations are produced by a 2-D

systolic array [24] comprised of p×p

processing elements (PEs) especially designed

for this purpose.

3) The third step is similar to step 2; however,

 during this time, the similar elements of

theresulting two matrix sequences from the step1 are

47

All Rights Reserved © 2016 IJARTET

multiplied to obtain the imaginary components of

the matrix product. Therefore, in this step, two new

exclusive equations are calculated respectively.

Further, the results of this step are stored in the same

memory block set as in step 2, but the second dual-

port memories are utilized in this case. The

implementations of this step are also accomplished

by the p×p systolic array as mentioned above after

the completion of step 2.

 Finally, the algorithm ends with the IFFT of

the contents of the memory blocks produced by the

outcomes of steps 2 and 3 to produce the output

polynomial matrix product. The IFFT is applied to

two memory blocks at a time in a specific order

.These computations are performed by the two

parallel FFT blocks as in step 1; however, this time,

they are computed in inverse mode. The above four

steps of the proposed hardware algorithm are

sequentially calculated in a pipelined manner for the

input polynomial matrices to obtain the maximum

throughput value.

B. POLYNOMIAL MATRIX ARCHITECTURE

In this section, the highly pipelined partly systolic

architecture implementing the hardware algorithm

detailed in Section IV-A for 4 × 4 polynomial

matrices, (i.e., p= 4). The FPGA architecture for

PMM has been designed using the Xilinx system

generator tool. It consists of the Data Path block that

computes data processing operations with a control

unit (i.e., Main_FSM block), incorporating with a

finite-state machine (FSM), which regulates

interaction between the Data Path block and the data

itself. The Data Path block, shown in Fig. 2, consists

of two sets of memory blocks and two main blocks,

namely FFT_IFFT and Systolic Array blocks,

sequentially implementing the four major steps of

the fast MIMO convolution technique. Outputs of

the FFT_IFFT block are stored in the first set of

memory blocks such as MemI1, MemI2, MemI3,

MemI4, MemI5, MemI6, MemI7, and MemI8.

On the other hand, results of the Systolic Array

block are stored into the second set of memory

blocks such as MemO1, MemO2, MemO3, and

MemO4. As mentioned above, each memory block

consists of two dual-port memories for storing

imaginary and real values. An important aspect of

the proposed architecture is it does not have any

high dependency on the order of the input

polynomial matrices. Only some specific parameter

values as well as size of the dual-port memories,

throughout the architecture need to be modified

when the order of the input matrices is changed.

Further, Xilinx uses fixed-point data type throughout

our architecture, where rounding and saturation have

been chosen as overflow and quantization options

respectively, for all arithmetical units. e.g.,

multipliers and adders, to improve the accuracy of

the design.

1) FFT_IFFT BLOCK:The inner structure of the

FFT_IFFT block is shown in Fig. 3. It mainly

consists of two FFT blocks operating

simultaneously, (i.e., FFT 7.1 modules [25]), which

can be operated in forward or inverse mode

depending on the fwd-inv signal. The block also

consists of four multiplexers (as well as a number of

other miscellaneous blocks) to select one input

signal from the corresponding set of three data

signals and provide it accordingly to the xn_re or

xn_im ports of the ft blocks, which are for inputting

real and imaginary values, respectively.

The FFT_IFFT block has two modes of
operation. In the first mode, the FFT blocks perform
the FFT on each polynomial element of multiplier
and multiplicand matrices in parallel, respectively. In
effect, the transformation is along the 3

rd
 dimension

of the polynomial matrix. Complex row vector
sequences resulting from the FFT of each
polynomial element multiplier matrix are stored into
the MemI1, MemI2, MemI3, and MemI4 memory
blocks respectively. Whereas complex column
vector sequences resulting from the FFT of each
polynomial element column for the multiplicand
matrix are kept in the MemI5, MemI6, MemI7, and
MemI7 blocks respectively in the same way.

In the second mode, an FFT block performs the

IFFT of the data of MemO1, MemO2, MemO3, and

MemO4 provided by the Systolic Array block, to

obtain the architecture output: polynomial matrix

product. The IFFT process is sequentially applied to

the read complex data from the MemO1 and MemO2

blocks from the respective FFT blocks in parallel,

and then the complex data from the blocks MemO3

and MemO4 are, processed by the FFT blocks

respectively, at the same time. Note that multiplexers

within the FFT_IFFT block architecture the data

from the memory blocks to the FFT blocks are

directed by multipliers, accordingly. The operations

within this block are controlled by the Main FSM

block.
2) SYSTOLIC ARRAY BLOCK:The

Systolic Array block is at the center of our data path

architecture (Fig. 1), containing a 2-D systolic array
composed of 4 × 4 identical PEs, namely PE00,

PE01, PE33, as shown in Fig. 4. The work of the

block is to compute the matrix product of two
(complex) polynomial matrices. This is split into two

operations: computation of imaginary component

48

All Rights Reserved © 2016 IJARTET

(imCfft) and real component (reCf ft) of the matrix

product in Fourier domain. In each operation, the

two matching elements of the matrix, from the

FFT_IFFT block, are multiplied. These two

operations are computed independently in each PE

within two consecutive cycles.The process in this

block starts by accessing blocks MemI1, MemI2,

MemI3, MemI4, MemI5, MemI6, MemI7, and

MemI8 to obtain the stored transformed matrix

sequences.
The complex data thus obtained are then

shifted into the systolic array in a sequential manner,
By adopting the following scheme: the polynomial

elements on each row of the multiplier matrix are
shifted into the corresponding row of the systolic
array simultaneously, whereas transformed

sequences for the polynomial elements on each
column of the multiplicand matrix are shifted into
the corresponding column of the systolic array
simultaneously. Depending on the operating cycle,
either the real or imaginary components of the
multiplicand and multiplier matrices are transferred
into the systolic array. During the 1st phase of the
first cycle, real components are shifted in, whereas
imaginary components are shifted in during the
second phase, where the multiplier matrix are
multiplied by (−1); the 1st

 phase of the second cycle
requires the shifting of real and imaginary
components of the multiplier and multiplicand
matrices, respectively, whereas, the second phase of
the second cycle, the inverse operation is performed.

These PEs work independent of each other, and

works parallel as the data stream enters the PE

during each cycle. At the end of the two consecutive

cycles, each PEij respectively will contain the

corresponding set of imCfft [i, j, t], (i.e., imaginary

matrix product components) and reCfft[i,j,t], (i.e.,

real matrix product components) in one of the local

memories for t= 1, 2. . . N. These components are

shifted out and stored in two dual-port memories

named as MemO1, MemO2, MemO3, and MemO4

correspondingly.

 The four sets of PEs are used to facilitate

the shifting process. The first set includes only PE00;

the second set includes PE01, PE10, and PE11; the

third set includes PE02, PE12, PE21, PE22, and

PE20; and the last and largest set includes PE03,

PE13, PE23, PE31, PE32, PE33, and PE30. Each of

these four sets independently used for shifting the

data within the linked PEs, at last shifts into the

designated memory blocks mentioned above. This

happens when each PE constituting the set ends

within the cycle. Note that the first dual port memory

within the memory blocks is filled with the real

values produced during the first cycle in the systolic

array, whereas the second one is utilized for utilizing

the imaginary values computed during the 2
nd

 Cycle.

FIG.1.ARCHITECTURE OF THE PROPOSED METHOD

49

All Rights Reserved © 2016 IJARTET

FIG.2.SYSTOLIC ARRAY BLOCK

3) PES:In Fig. 5 the inner structure of

identical PEs is shown. It is mostly consists of an

addressable shift register, an adder, a multiplier, a

multiplexer, two FIFO blocks, (i.e., FIFOa and

FIFOb), and Control Unit block within the specific

PE. PEs also contains a number of pipeline registers,

simple logic gates, and other miscellaneous blocks.

FIFOa and FIFOb within PEs used to transmit either

real or imaginary components of the multiplier and

multiplicand matrices respectively within current

operation cycle, the buffers are simultaneously

accessed, and then the read data are multiply and

accumulated in accordance with the respective

equations of

reCf f t [i, j, t] = reCf f t [i, j, t] + reHf f t [i, k,t]

×reRf f t [k, j, t] (15)

reCf f t [i, j, t] = reCf f t [i, j, t] − imHf f t [i, k, t]

×imRf f t [k, j, t] (16)

For t = 1, 2. . . N and k = 1, 2. . . P, by the multiplier

and adder (Fig. 5); meanwhile the addressable shift

register is used as an accumulator that

continuouslyshifts the output of the adder in through

the multiplexer and shifts it out into one input port of

the

Adder through a delay Element. Eventually, the

addressable shift register will have, at the end of the

cycle, the set of the matrix products, (i.e., reCf f t) for

the particular indices i, j indicated by the position of

the PE within the systolic array blocks. The 2
nd

 cycle

of operation is similar to the 1
st
 cycle; however, the

equations of

imCf f t [i, j, t] = imCf f t [i, j, t] + reHf f t [i, k, t]

×imRf f t [k, j, t] (17)

imCf f t [i, j, t] = imCf f t [i, j, t] + imHf f t [i, k, t]

×reRf f t [k, j, t] (18)

Are implemented for t = 1, 2. . . N and k = 1, 2. . . P

During the 1
st
 and 2

nd
 phases, respectively, to

compute the set of imaginary components of the

matrix products, (i.e., imCf f t) of the same index

point. The addressable shift registers in the same PE

set gets connected to each other through the Shafto

cycle. This enables the out shifting of data contained

within the addressable shift registers of PEs

50

All Rights Reserved © 2016 IJARTET

FIG.3.TOP-LEVEL BLOCK DIAGRAM FOR PMM

V. RESULTS

The architecture for performing the PMM,

whose block diagram is shown in Fig. 3, was

implemented on the Virtex-5 Open SPARC platform

[26], which is a general-purpose development board

with XC5VLX110T Xilinx Virtex-5 FPGA chip [27].

As described before, our architecture was developed

using the Xilinx system generator tool, which was

then synthesized, placed, mapped and routed by the

Xilinx ISE 14.5 tool. FPGA-in-the-loop hardware co

simulation method was used to verify the correct

operation of the FPGA design. To show the

performance of the proposed PMM algorithm

implementation, we represent the results from the

simulation defined in Section V-A. Simulations on

the hardware accuracy of the utilized fast MIMO

convolution technique are explained, whereas the

amount of resources consumed in the FPGA chip and

timing performance of the hardware design are

presented.

A. HARDWARE TIMING PERFORMANCE

AND RESOURCE UTILIZATION

 To analyze the complexity of calculating the

PMMs, theensemble was simulated on a PC with 8-

GB RAM running at 64-bit operating system and

2.67 GHz Intel core i5processor.We show the

average CPU access time taken by ourproposed

algorithm running in MATLAB versus FFT lengthfor

matrix–matrix PMM, and theMIMO filtering. Also

includedare the MATLAB execution times required

by the equivalenttime-domain MIMO convolution

routines for comparison.As expected, the proposed

PMM algorithm for matrix–matrix is faster than the

time-domain counterpart. The result isthe upward

trend of the curves, for N = 64. However, there is, on

average of six fold drop in this speedup, for N = 512.

Note that, the CPU access time by our algorithm for

matrix–vector PMM is greater than for time-domain

MIMO convolution for large N. The reduced run-

times achieved by our algorithm on PC shows its

applicability to real-time problems.

In Table I, we demonstrated the fixed

number of clock cycles required by our FPGA

design, for example N ∈ {64, 128, 256, 512}, for the

computation of the polynomial matrix product. It also

shows the effective number of clock cycles for each

N, which is the number of cycles after which a new

set of polynomial matrices input populated into the

architecture. As observed, the number of clock cycles

required by our FPGA architecture increases as N is

doubled. In the Tables II and III the access time

consumed by the FPGA design versus Nis given,

which is calculated based on the total number of

clock cycles required at an operating frequency of

100 MHz the speed of the proposed FPGA design is

compared with equivalent MATLAB code execution

time on PC. It also shows the average CPU time

execution,for all N. The speed up performance by our

architecture over MATLAB execution is more than

an order of magnitude, which is suitable for real-time

applications. The maximum throughput achieved by

our design for all Nvalues, based on the effective

number of required clock cycles, in mega word per

second, in both imaginary and real component of the

polynomial matrix products shown in Table VI.

Notice that changes in N have a little effect on the

throughput, which is due to the pipelined nature of

the proposed architecture.

TABLE I

NUMBER OF CLOCK CYCLES REQUIRED BY OUR FPGA DESIGN

TABLE II

FPGA VERSUS CPU TIME REQUIREMENTS FOR

THEPOLYNOMIALMATRIX–VECTORMULTIPLICATIONWITH

FAST MIMO CONVOLUTION

N CPU FPGA SPEED

64 430.32 32.15 13.4

128 701.83 62.45 11.2

256 1674.7 122.73 13.7

512 3169.3 243.27 13.0

TABLE III

FPGA VERSUS CPU TIME REQUIREMENTS FOR

THEPOLYNOMIALMATRIX–MATRIX MULTIPLICATION

WITHFASTMIMO CONVOLUTION

N CPU FPGA SPEED-UP

64 927.59 32.15 28.9

N No of cycle No of effective cycles

64 3215 3006

128 6245 5897

256 12273 11663

512 24327 23194

51

All Rights Reserved © 2016 IJARTET

128 1584.1 62.45 22.3

512 2740.2 243.27 25.4

256 5245.4 122.73 21.6

TABLE IV

LOGICAL COMPARISION

TABLE V

FPGA RESOURCE UTILIZATIONS FOR THE PROPOSED

ARCHITECTURE

 USED AVAIL

ABLE

UTILIZATION

 N=64 N=128 N=64 N=128

NO.SLICE

REGISTERS

19,349 25,847 69,120 27% 37%

NO.SLICE

LUTS

20,847 27,907 69,120 30% 40%

NO USED

AS LOGIC

16,814 22,191 69,120 24% 32%

NO.USED

AS

SHIFTREG

3,676 4,988 17,920 20% 27%

NO.OCCUPI

ED SLICES

7,226 9,323 17,920 41% 53%

NO.BLOCK

RAM/FIFO

64 65 148 42% 43%

NO.USING

BLOCK

RAM ONLY

31 33 63,64 49% 51%

NO.USING

FIFO ONLY

32 32 63,64 51% 49%

TOTAL

MEMORY

USED

2,160 2,304 5,328 40% 43%

TABLE VI

THROUGHPUT ATTAINABLE BY OUR ARCHITECTURE

N THROUGHPUT(MW/s)

64 69.63

128 69.63

256 70.21

512 70.62

VI.CONCLUSION

 In this paper, we have demonstrated

FPGAarchitecture for the implementation of PMM.

The proposed architecture is based on the application

ofthe fast convolution technique to MIMO systems,

which exploits the FFT. A main contribution of this

paper is the introduction of a partly systolic highly

pipelined architecture for the realization of fast

MIMO convolution. The proposed architecture

consumes limited FPGA resources and has a little

dependency on the input polynomial matrices order,

which makes for a scalable design. Specifically,

built-in FIFOs and the sizes of the block RAMs as

well as the transform length of the FFT blocks,

should be modified for the input matrix order.

Further, the FFT blocks transform length is,

enhancing both the scalability and adaptability

runtime configurable.The data widths used in the

current implementation are reduced by the limited

number of FPGA chip. However, for larger FPGA

specialized for DSP implementations are employed,

the data widths are increased to achieve

higheraccuracy. In this case, detailed investigations

in determining the optimum data width versus

accuracy in multiplication

REFERENCES

[1] G. H. Golub and C. F. Van Loan, Matrix Computations.

Baltimore, MD, USA: John Hopkins Univ. Press,

1996.

[2] P. A. Regalia and P. Loubaton, “Rational subspace

estimation using adaptive lossless filters,” IEEE

Trans. Signal Process., vol. 40, no. 10, pp. 2392–

2405, Oct. 1992.

[3] R. H. Lambert, M. Joho, and H. Mathis, “Polynomial

singular values For number of wideband source

estimation and principal components Analysis,” in

Proc. Int. Conf. Independ. Compon. Anal., 2001, pp.

379–383.

[4] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and

J. Foster, “An EVD algorithm for para-Hermitian

polynomial matrices,” IEEE Trans.Signal Process.

vol. 55, no. 5, pp. 2158–2169, May 2007.

[5] S. Redif, J. G. McWhirter, P. Baxter, and T. Cooper

“Robust broadband adaptive beam forming via

polynomial eigenvalues,” in Proc. IEEEOcean. Conf.,

Jun. 2006, pp. 1–6.

PARAMETERS CMOS PASS

TRANSIS

TOR

LOGIC

GATE

ARRAY

LOGIC

Number of

Transistor

Most More Less

Area Maximum Medium Minimum

Power Most More Less

Delay Most More Less

Speed Less Medium High

52

All Rights Reserved © 2016 IJARTET

[6] S. Weiss, M. Alrmah, S. Lambotharan, J.G. McWhirter,

and M. Kaveh, “Broadband angle of arrival estimation

methods in a polynomial matrix Decomposition

framework,” in Proc. 5th IEEE Int. Workshop

Comput. Adv. Multi-Sensor Adaptive Process. Dec.

2013, pp. 1–3.

[7] S. Redif and U. Fahrioglu, “Foetal ECG extraction

using broadband signal subspace decomposition,” in

Proc. IEEE Medit. Microw. Symp, Guzelyurt, Cyprus,

Jun. 2010, pp. 381–384.

[8] S. Y. Kung, Y. Wu, and X. Zhang, “Bezout space-time

precoders and equalizers for MIMO channels,”

IEEETrans. Signal Process, vol. 50, no. 10, pp. 2499–

2541, Oct. 2002.

[9] Christo Ananth, Bincy P Chacko, “Analysis and

Design of Low Voltage Low Noise LVDS Receiver”,

IOSR Journal of Computer Engineering (IOSR-JCE),

Volume 9, Issue 2, Ver. V (Mar - Apr. 2014), PP 10-

18 [10]N. Moret, A. Tonello, and S. Weiss, “MIMO

precoding for filter bank modulation systems based on

PSVD,” in Proc. IEEE 73rd Veh. Technol.Conf., May

2011, pp. 1–95.

[11] R. Brandt and M. Bengtsson, “Wideband MIMO

channel diagonalization in the time domain,” in Proc.

Int. Symp. Personal, Indoor, Mobile RadioCommun.

2011, pp. 1914–1918.

[12] J. Foster, J. G. McWhirter, S. Lambotharan, I. Proudler,

M. Davies, and J. Chambers, “Polynomial matrix

QRdecomposition and iterative decoding of frequency

selective MIMO channels,” IET Signal Process., vol.

6, no. 7, pp. 704–712, Sep. 2012.

[13] P. P. Vaidyanathan, “Theory of optimal orthonormal

sub band coders,” IEEE Trans. Signal Process., vol.

46, no. 6, pp. 1528–1543, Jun. 1998.

[14] P. Moulin and M. K. Mihcak, “Theory and design of

signal-adapted FIR par unitary filter banks,” IEEE

Trans. Signal Process, vol. 46, no. 4,pp. 920–929,

Apr. 1998.

 [15]A.Tkacenko, “Approximate eigenvalue decomposition

of para-hermitian systems through successive FIR

par unitary transformations,” in Proc. IEEE Int.

Conf. Acoust., Speech Signal Process. Mar. 2010, pp.

4074–4077.

[16] S. Redif, S. Weiss, and J. G. McWhirter, “An

approximate polynomial matrix eigenvalue

decomposition algorithm for para-hermitian matrices,”

in Proc. IEEE Int. Symp. Signal Process. Inf. Technol.,

Dec. 2011, pp. 421–425.

[17] S. Redif, S. Weiss, and J. G. McWhirter, “Design of

FIR paraunitary filter banks for subband coding using

a polynomial eigenvalue decomposition,” IEEE Trans.

Signal Process., vol. 59, no. 11, pp. 5253–5264, Nov.

2011.

[18] P. P. Vaidyanathan, Multirate Systems and Filter

Banks. Upper Saddle River, NJ, USA: Prentice-Hall,

1993.

[19]S.Kasap and S. Redif, “Novel field-programmable gate

array architecture for computing the eigenvalue

decomposition of para-Hermitian polynomial

matrices,” IEEE Trans. Very Large Scale Integer.

(VLSI) Syst., vol. 22, no. 3, pp. 522–536, Mar. 2013.

[20]R.Bracewell, the Fourier Transform and Its

Applications. New York, NY, USA: McGraw–Hill,

1999.

[21] Xilinx Inc., San Jose, CA, USA. (2013, May). System

Generator for DSP v14.5 User Guide

[Online].Available:

