
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

833
All Rights Reserved © 2016 IJARTET

Automated Test Code Generation Technique to Improve Software

Quality

S.Sujitha
#1

, V.M.Priyadharshini
*2

,

1M.E (Software Engineering), Anna University, Trichy
 sujithacse1992@gmail.com

2Assistant Professor-CSE/IT dept., Anna University, Trichy
priyadharshinivm@gmail.com

Abstract— The application of internet and mobile

computing has increased our dependence on software

systems. The major concerns for software systems are

reliability and security. To increase security for the system,

Model based Integration and System Test Automation

(MISTA) has been used. It uses high level petrinet model

to get data requirements from functional testing, access

control testing and penetration testing. First MISTA

generates test cases from test model and then converts test

cases into executable test code. The MIM specification

converts the elements of the test model to the

implementation level constructs. MISTA implements test

generators for different test coverage criteria and code

generators for different programming languages such as

Java, C, C++, HTML etc. MISTA has been applied to both

functional and security testing of software system and it

also used to analyse the time dependency between the fault

detection and correction process.

Keywords— Petrinet; functional testing; security testing;
software assurance; model based testing

1. Introduction

Software quality assurance is important for software

testing. It aims at finding errors by executing a program

with test cases. Automated software testing has been used

because it will reduce cost and improve testing productivity.

The software testing is a labor intensive activity and it is

expensive. For improving testing productivity and reduce

costs, it is important to automate test generation and

execution. It also generates quick, efficient and verification

of requirement changes and bug fixes and reduces the

human error. The major means for improving the quality of

the software system is to test the system to find potential

failures.

Model based testing (MBT) generates and executes test

cases using behavior models by System under test (SUT)

[2]. It can be very effective in fault detection. The main

work of our approach is to gather and integrate functional

and security testing. The access control tests can be

executed from test models and it also produces the

interactions done in access control model [3]. By applying

the fault detection technique in MBT, the access control

model uses the mutation method. Mutation method is used

for analyse the effectiveness for the techniques of software

testing. During test execution the failure can be detected is

a called mutant.

In existing technique, MBT technique focuses only on

functional testing. It will apply directly to functional testing

not for security testing. The MBT technique doesn’t

completely generate the automatic test execution because

of two reasons: i) the model generates test are not complete

because the parameters cannot be specified directly. ii)

Doesn’t immediately executes the test obtained from test

model because the test model use different programming

languages.

In our proposed technique, we use a new tool technique

called Model based Integration and System Test

Automation (MISTA) for generating test code from a

Model Implementation Description (MID). It will integrate

the functional and security testing. MID contains the Model

Implementation Mapping (MIM) and test model. The test

models are functional model, access control model and

security model. It uses the high level petrinet model for

verifying the software system. Test models designed by the

petrinet can integrate both data and control flow of test

models. MISTA can generate automatic model based test

cases, including the test inputs and expected test results.

MISTA shows the relations of test models and

implementation level for the test environment. It will

automatically help to generate test code from test model.

The remainder of this paper is structured as follows:

Background and related works are explained in Section II;

Automated test code generation and its architecture can be

presented in Section III; Generation of model based tests

and example is described in Section IV; Conclusion and

future work for the technique is discussed in Section V.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

834
All Rights Reserved © 2016 IJARTET

2. Background

We use MISTA tool for functional and security testing.

D.Xu et al.[4] proposed a Threat Model-Implementation

(TMID) approach to automated generation of security tests

by using formal threat models that can be denoted as

Predicate/Transition nets. This model generates attack

paths. A formal threat driven approach of security threats

was described by D.Xu et al.[5] that acts as the mediator

between security goals and applications of the security

features. Y.L.Traon et al.[6] provides a test driven

methodology and policy decision point to analyse the

flexibility of the system. The security policy modification

can helps to changes in the test code for flexibility. The

property is defined as the degree of coupling in between

access control logic and business logic in the system.

H.Zhu et al.[7] presents a new method for test the software

system depend on high level petrinets. For that approach

use four testing technique called state oriented testing, flow

oriented testing, transition oriented testing and

specification oriented testing. All techniques are used a set

of schemas for analyse and generate a testing results and

various coverage criteria. J.Desel et al.[8] discussed a new

concept called cause effect graphing for generates the test

cases and the test code. The high level petrinet acts as a

intermediate level. The policy used for generating test from

the finite state model was proposed by A.masood et al. [9]

and evaluated the Role Based Access Control (RBAC)

policy. The test suite generated from this model is suitable

for fault detection. To avoid fault and increase security

policy W.Mallouli et al.[10] described a technique called

extended finite state machine.

To generate test cases Alexander et al.[11] defined the

model based approach. Jacques et al.[12] discussed the

approach to add security testing with the functional testing

by using language expression in model based approach. In

a modular technology, H.Huang et al.[13] specified and

verified the security policies of the system used the colored

petrinet process. The security policy of the module is

considered as very flexible. Mortensen [14] specified the

colored petrinet model to analyse the access control system

to generate the test code. The main characteristics are that

model is focus only on access control model, but not for

the intermediation between the access control model and

functional model. In our approach, the access control

model integrates with the functional model. The security

testing used the attack trees requires mostly the manual

work for convert the attack tree into security test. In our

work, to find the fault occur in software using model based

testing.

 3. Automated Code Generation

3.1 Architecture

. Fig.1 shows the architecture of MISTA. The input to

the MISTA is MID specification, which includes the test

model and the MIM specification. The test model denotes

the petrinet model that contains functional model, access

control model, and the threat model. The functional model

specifies the function in the system, the access control

model describes the constraints on the system and the

threat model shows the security policy in the system. The

MIM specification converts the test model to

implementation constraints. MISTA uses different

languages such as C, C++, HTML etc to generate test code.

It supports a various coverage criteria for test case

generation. MISTA is also very effective in the software

fault detection.

 Fig.1: Architecture diagram of MISTA

3.2 Petrinet model

PrT nets are also known as high-level Petri nets. The

previous work has also explained that PrT nets are able to

specifying access control methods and security threats.

Because the test models specified by PrT nets can integrate

both data and control flows of test requirements. MISTA

can generate automatic model based test cases, including

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

835
All Rights Reserved © 2016 IJARTET

the test inputs and the expected test results.

The generation of test model from the PrT net

reduces the derivation of valid and invalid test cases. The

petrinet is the directed bipartite graph, in which the nodes

represent places and transitions. The directed arcs describe

in the petrinet model in which places describes are pre or

post conditions for the transitions. It is also known as

place/transition net. It is one of the developed mathematical

modeling languages for the specification of distributed

systems [1].

 A petrinet has five tuples : <R, S, T, U, L1>

 Where, R - finite set of places

 S - finite set of transitions

 T - finite set of normal arc

 U - finite set of inhibitor arc

 L1 - set of initial markings

3.3 Model Implementation Mapping (MIM)

The MIM specification mapping the inputs of the test

model to the implementation level execution. The goal of

model-based testing is to check whether an implementation

of a software system relates to the model of that system.

The requirements and the test models checks by the MIM

specification in the implementation stage. By automatically

generate the test cases and expected results from the

specification of the system, it requires a formal

specification. In some cases the formal specification is also

executable by the expected results obtained by executing

the specified specification with the test inputs. The setting

predicate denoted an input condition of the component that

should be configured correctly before called by the

component. For example, the test generation component of

MISTA requires that the coverage criterion be set before it

is invoked. This can be occurring by calling the mutator

function of the predicate coverage.

The MIM specification obtain the elements from the

petrinet model< R, S, T, U, L1> used in the target language

to the programming languages. MIM consists of identity of

the system, list of hidden predicates in the test model and

the mapping elements. The helper code ‘h’ is used to

generate the test code. It contains the header, setup

methods and generated code.

3.4 Model Implementation Description (MID)

The input to the MISTA is called a Model-

Implementation Description (MID) and it consists of a test

model and a Model-Implementation Mapping (MIM). MID

is the front end language for MISTA, and gives the basics

for the automated test generation approach. The MIM

specification mapping the input of the test model to the

implementation level constructs. For the MID technique,

the test code can be generated by MISTA for the target

languages such as Java, C#, C, C++, HTML etc based on

the various coverage criterion of the test model such as

reachability coverage, state coverage, transition coverage,

depth coverage, and goal coverage. During the

development stage, we have applied MISTA to the

functional testing to find many problems occur in the

system. This MISTA technique has proved that it is very

effective in fault detection of the systems.

3.5 Test Code

The target language used in the transition tree is used to

generate the test code. MISTA generates the test code from

the abstract test from MIM specification [20]. The test code

generated in the Selenium IDE can be automatically

executed. Helper code denotes to the test code that helps to

the tester to generate the executable test code. Test code

generation is to convert the transition tree to generate the

test code according to the MIM specification and the helper

code. The system under test immediately generates and

executes the test code. The generated test code is in the

form of different target languages from a given input

transition tree. Various languages can acts as a input to

generate the test code. For example, Jfcunit is an extension

for JUnit for GUI testing of the Java programs.

4. Generation of Model Based Tests

The test case can be automatically generated from the

model by using model based tests. To analyse software

testing the MBT is execute the design from models[17].

Test models represent the behaviour and functions of

system and also express the test environment. The existing

model based tools focus less on the automatic test code

generation. The method calling and execution can be done

in the execution of a program [16]. Model Based Testing

(MBT) generates test cases and verified the relations

between the models and system under test (SUT) by make

use of test models of a system under test. The modeling

process of MBT helps clarify test requirements. Access

control policies are well constraints on system functionality,

whereas security attacks are often unexpected behaviors

that violate security requirements such as confidentiality,

integrity, and availability. Threat modeling can acts as

efficient for security testing because threat models

describes how security threats attack or damage the system .

4.1 Fault Detection

 The software faults defines a defect occur in the system.

MBT can be considered as effective in fault detection in

the software system because of the automatic generation

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

836
All Rights Reserved © 2016 IJARTET

and execution of many test models. The

successful testing is it will recover all testing

error in the software. First we will assume priority to the

valid test cases and we select the valid test cases based

upon their priority value [18]. The code coverage value is

also based upon the priority value. The interactions occur

in the test makes complexity and increase the fault

detection.

 Fault correction is also a difficult and a time

dependency process [19]. The performance can be

calculated based on the fault detection and correction in the

test code. The evaluation method is used to increase the

reliability. The fault detection can be calculated by,

4.2 Running Example

The running example called the bank account is in the

form of petrinet model. Three operations can be done: open,

close and overdrawn. It is implementation independent.

The banking system consists of bank account and bank

details. Bank details denote the customer will create, access

and close their accounts. Bank account can be used to

know the balance amount, deposit and their withdrawal.

Bank account can be used to analyse the open and close

operations. Many states are reached from the initial goal

state. It can be written as {withdraw

[amt>0&&b_amt<0]},{ withdraw[amt>0&&b_amt>=0]}.

The time taken for code generation for bank account is

0.5 seconds. The breadth first search strategy can be used

and it reaches the maximum search depth is 100. The

hidden event or condition can be analysed in MIM

specification. For example, { ontable (3), ontable(6),

clear(2), clear(5), on(2,3) , on(5,6)} denotes the account 2

and 3are in the table, account 5 is on block 6, account 2 and

5 are clear and the account become empty.

 Fig. 2: Bank account example

5. Conclusion

The systems have presented a technique for automated

generation and execution of functional and security

tests from a test model including with the mapping

from the elements of the model to the implementation

constructs. The mapping makes it feasible to convert

the model level tests into the executable form of test

code. MISTA technique is very efficient and effective

for generating test cases and test code. The main

advantage is that the technique can integrates system

functions, access control policies and security model.

This technique can generate executable test code and

detect the fault occur in the system. Due to the technical

architecture, this technique is easy to introduce a new

test generator, target language and test execution

environment. The possible approach is to use PrT nets

for associating the transitions with time intervals same

as in Time petrinets. In future work, introduce notations

for real world systems and compare the fault detection

with various coverage criteria.

References

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.

IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[2] D. Xu, “A tool for automated test code generation from high-level

Petrinets,” in Proc. 32nd Int. Conf. Applicat. and Theory of Petri

Nets and Concurrency (Petri Nets 2011), LNCS 6709, Springer-
Verlag, Berlin, Heidelberg, Germany, Newcastle, U.K., Jun. 2011,

pp. 308–317.

[3] D. Xu, L. Thomas, M. Kent, T. Mouelhi, and Y. Le Traon, “A
model-based approach to automated testing of access control

policies,” in Proc. 17th ACM Symp. Access Control Models and

Technologies (SACMAT'12), Newark, NJ, USA, Jun. 2012.
[4] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W. Xu,

“Automated security test generation with formal threat models,”

IEEE Trans. Depend. Secure Comput., vol. 9, no. 4, pp. 525–539,

Jul./Aug. 2012.

[5] D. Xu and K. E. Nygard, “Threat-driven modeling and verification
of secure software using aspect-oriented Petri nets,” IEEE Trans.

Softw Eng., vol. 32, no. 4, pp. 265–278, Apr. 2006.

[6] Y. L. Traon, T. Mouelhi, A. Pretschner, and B. Baudry, “Test-

driven assessment of access control in legacy applications,” in Proc.

1st IEEE Int. Conf. Software, Testing, Verification and Validation

(ICST'08), Norway, 2008, pp. 238–247.

[7]] H. Zhu and X. He, “A methodology for testing high-level Petri

nets,” Inf. Softw. Technol., vol. 44, pp. 473–489, 2002.

[8] J. Desel, A. Oberweis, T. Zimmer, and G. Zimmermann,
“Validation of information system models: Petri nets and test case

generation,” Proc. SMC'97, pp. 3401–3406, 1997.

[9] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur, “Scalable and
effective test generation for role-based access control systems,”

IEEE Trans. Softw. Eng., vol. 35, no. 5, pp. 654–668, 2009.

[10] W. Mallouli, J.M. Orset, A. Cavalli, N. Cuppens, and F. Cuppens,
“A formal approach for testing security rules,” in Proc. 12th ACM

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

837
All Rights Reserved © 2016 IJARTET

Symp. Access Control Models and Technologies,
2007, pp. 127–132.

[11] A. Pretschner, Y. L. Traon, and T. Mouelhi, “Model-based tests for

access control policies,” in Proc. 1st Int. Conf. Software Testing

Verification and Validation (ICST'08), Lillehamer, Norway, Apr.

2008.

[12] J. Julliand, P. A. Masson, and R. Tissot, “Generating security tests

in addition to functional tests,” in Proc. 3rd Int. Workshop

Automation of Software Test, 2008, pp. 41–44.

[13] H. Huang and H. Kirchner, “Formal specification and verification
of modular security policy based on colored Petri nets,” IEEE

Trans. Depend. Secure Comput., vol. 8, no. 6, pp. 852–865,

Nov./Dec. 2011.
[14] K. H. Mortensen, “Automatic code generation method based on

coloured Petri net models applied on an access control system,” in

Application and Theory of Petri Nets. New York, NY, USA:
Springer-Verlag, 2000, pp. 367–386.

[15] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A threat

model-based approach to security testing,” in Software: Practice

and Experience, Expanded Version of the AST'09Workshop Paper,

Feb. 2013, vol. 43, pp. 241–258.
[16] L. Wang, W. Wong, and D. Xu, “A threat model driven approach

for security testing,” in Proc. 3rd Int. Workshop Software Eng. for

Secure Syst. (SESS'07), May 2007.

[17] C.Chang, X.Huang, D.Xu, Y,Lai, “An Uml behavior diagram based

automatic testing approach,” in IEEE 37th Annual comp.software

and appl.conference Workshops 2013.

[18] S.Chaturvedi, A.Kulothungan, “Improving fault detection

capability using coverage based analysis,” in IOSR Journal of

Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN:
2278-8727Volume 16, Issue 2, Ver. VI (Mar-Apr. 2014), PP 22-30.

[19] Y.P.Wu, Q.P.Hu, M.Xie, S.H.Ng, “Modeling and analysis of

software fault detection and correction process by considering
time dependency,” in IEEE Trans. on Reliability, Vol. 56, No. 4,

Dec 2007.

[20] D.Xu, Weifeng Xu, Manghui Tu, “Automated generation of
integration test sequences from logical contracts,” in IEEE 38th

Annual International Computers, Software and Applications

Conference Workshops 2014.

