
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

637

All Rights Reserved © 2016 IJARTET

WEB VULNERABILITY SCANNER

USING SOFTWARE FAULT INJECTION

TECHNIQUES

 S.JEEVA#1 ,K.RAVEENA#1, K.SANGEETHA#1, P.VINOTHINI#2.

#1 Bachelor of Computer Science and Engineering
#2 Assistant professor - Department of Computer Science and Engineering

Bharathiyar Institute of Engineering for Women
.

ABSTRACT

We propose a methodology and a prototype to evaluate security in web application.A large amount of

web app has been developed. Web applications are typically urban with hard time constraints.There are

lot of common weaknesses,it acts as a victim to the business and check this all weaknesses with hand is

difficult task. In addition to the some methodology, the paper explains the completion of the

Vulnerability & Attack Injector Tool (VAIT) that allows the automation of the whole process. This tool

creates feasibility.It is not impossible to compare key figures of web vulnerability scanners. To propose

a method to evaluate automatic vulnerability scanners. The impact of a security breach can be very high.

The web application market is growing fast, resulting in a huge proliferation of web apps based on

different languages frameworks and largely fueled by the simplicity. one can develop and maintain such

applications.

KEYWORDS:VAIT,security,review and evaluation.

1.INTRODUCTION

To fight this situation we need means to evaluate the

security of web applications and of attack contradict

measure tools. To handle web application security, fresh

tools need to be developed, and events and regulations

must be improved, redesigned. further more, everyone

involved in the development process should be trained

properly. All web applications should be thoroughly

validated before going into production. However, these

best practices are unfeasible for millions of existing

inheritance web applications, so they should be

constantly protected by security tools during their

lifetime. This is particularly relevant due to the

dynamicity of the security scenario, and ways of

exploitation being discovered every day. Clearly,

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

638

All Rights Reserved © 2016 IJARTET

security technology is not enough to stop web

application attacks and practitioners should be concerned

with the assurance of their success . In practice, there is a

need for new ways to effectively test existing security

mechanisms to improve them.

 It proposes a tool to inject weakness and attacks in
web applications. The attitude is based on the idea that
we can assess different attributes of existing web
application security mechanisms and attacking them
automatically .It inspired on the failure injection
technique that has been used for decades in the
dependability area . In our case, the set of “vulnerability”
“attack” represents the space of the failure and the
“disturbance” is the result of the molest of a
“vulnerability” causing to enter in an bad state. A
security “vulnerability” is a weakness (an internal
“liability”) that may be exploited to cause damage, but
its presence does not cause harm by itself.
Conceptually, the attack injection consists of the realistic
vulnerabilities that are automatically exploited
(attacked).Vulnerabilities are considered realistic
because they are derived and are injected according to a
set of representative restrictions and rules. The attack
injection methodology is based on the dynamic analysis
is obtained from the runtime monitoring of the web
application behavior and of the interaction with external
resources, such as the backend database. This
information, complemented with the static analysis,
allows the effective injection of vulnerabilities. the use
of both static and dynamic analysis is a key for the
methodology that allows the overall presentation .as it
provides the means to inject more vulnerabilities that can
be successfully attacked and discarded .
The method can be applied to various types of
vulnerabilities, focus on widely exploited and serious
vulnerabilities that are (SQLi) and (XSS). Attacks to
these vulnerabilities take advantage of improper coded
due to unchecked input fields at user interface. It allows
the attacker to change the SQL commands or through the
input of HTML and scripting languages (XSS).It

provides a environment that can be used to test counter
measure mechanisms(firewalls, static code analyzer.),
train and evaluate security teams, help estimate security
measures (like the vulnerabilities current in the code),
among others. This evaluation of tools can be done
online or offline by injecting are presentative set of
vulnerabilities that can be used as a test bed for
evaluating a security tool.
A tool to infuse vulnerabilities and attacks in web
applications. The proposed methodology is based on the
idea that we can evaluate attributes of existing web
application security mechanisms by infusing realistic
vulnerabilities and attacking them automatically. This
follows a procedure inspired on the fault infuse
performance. a security “vulnerability” that may be
reduce to cause injury, but its presence does not cause
injury by itself .
The attack infuse methodology is based on the dynamic
analysis of information obtained and of the interface
with external resources, such as the backend database.
This information, complement with the static breakdown
of the source code of the application, allows the effective
infuse of vulnerabilities that are similar to those found in
the real world. The use of both static and dynamic
analysis is a key aspect of the methodology that allows
increasing the overall presentation and effectiveness, as
it provides the means to infuse more vulnerabilities that
can be successfully attacked and eliminated those that
cannot. Although this methodology can be applied to
different types of vulnerabilities, we focus on two of the
most widely broken and serious web application
vulnerabilities that are SQL Infuse (SQLi) and Cross
Site Scripting(XSS) . Attacks basically take advantage of
offensive coded applications due to unchecked input
fields at user boundary. This allows the defender to
change the SQL commands that are sent to the database .
 The methodology proposed was implemented in a real
Vulnerability & Attack (VAIT) for web applications.
The instrument was tested applications in two scenarios.
to estimate the effectiveness of the VAIT first in
generating a high number of rational vulnerabilities for

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

639

All Rights Reserved © 2016 IJARTET

the offline estimation of security tools, in relaxed web
application weakness scanners. The second to show how
it can exploit infused weakness to launch attacks,
allowing the online estimate of the proficiency of the
counter measure mechanisms installed in the target
system, in meticulous an intrusion system. These
experiments illustrate how the proposed methodology
can be used in practice, not only to discover existing
weaknesses of the tools analyzed, but also to assist
improve them.

 2.RELATED WORK

This paper proposes a methodology and a tool to infuse
vulnerabilities and attacks in web applications. The
proposed methodology is based on the idea that we can
evaluate different attributes of existing web application
security mechanisms by infusing realistic vulnerabilities
in a web application and attacking them
automatically.This follows a procedure inspired on the
fault infuse performance that has been used for decades
in the fidelity area. . The set of “vulnerability”
represents fault space infused in a web application,
the“invasion” is the result of the winning of a “attack”
causing the application to penetrate in an “fault” state.
The attack infuse methodology is based on the dynamic
analysis of information obtained from the runtime
monitoring of the web application behavior and of the
interface with external resources, such as the backend
database. This information, complement with the static
breakdown of the source code of the application, allows
the effective infuse of vulnerabilities that are similar to
those found in the real world. The use of both static and
dynamic analysis is a key aspect of the methodology that
allows increasing the overall presentation and
effectiveness, as it provides more vulnerabilities that can
be successfully attacked and discarded those that cannot.
Although this methodology can be applied to different
types of vulnerabilities, we focus on two of the most
widely broken and serious web application
vulnerabilities that are SQL shot and (XSS) . Attacks to

these vulnerabilities take of offensive coded applications
due to unchecked fields of the input at user interface.
This allows the defender to change the SQL commands
that are sent to the record through the input of HTML
and scripting languages (XSS).
 The methodology proposed was implemented in a real
Vulnerability & Attack (VAIT) for web applications.
The instrument was tested on top of widely used
applications in two scenarios. The first find thae
effectiveness of the VAIT in generating a high number
of rational vulnerabilities for the offline estimation of
security tools, in relaxed web application weakness
scanners. The second to show how it can exploit infused
weakness to launch attacks, allowing the online estimate
of the efficiency of the counter measure mechanisms
copied in the target system, in particular an intrusion
system. These experiments illustrate how the proposed
methodology can be used in practice ,not only to
discover existing weaknesses of the tools analyzed ,but
also to assist improve them.
 The industry uses fuzzing and Mutation testing

penetration testing of web applications. They rely on

scanner tools that generate compliant reports with

security regulations (Sarbanes-Oxley, PCI-DSS, etc.).

Some of the tools are HP Web Inspect, web securify. In

spite of their continuous development, these tools still

have many problems of undetected vulnerabilities in

false positives, To address these problems, it was

proposed a method to benchmark these scanners The

method starts by identifying all the points where each

type of bug can be injected,. Many of these bugs injected

that can be used to test and compare the performance of

the scanners. The model finders also used for protection

analysis.In this case, the vulnerability is injected by

mutating the formal model of the web application. The

model is also used to generate test cases that are used to

attack the web application in a semi-automatic way. The

list of possible types of vulnerabilities affecting web

applications is enormous, but XSS and SQLi are at the

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

640

All Rights Reserved © 2016 IJARTET

top of that list, accounting for 32 percent of the

vulnerabilities observed. SQLi and XSS.

An SQLi attack consists of tweaking the input fields of

the webpage (which can be visible or hidden) in order to

alter the query sent to the back-end database. These

allow the attacker to retrieve sensible data or even alter

database records. An SQLi attack can be dormant for a

while and only be triggered by a specific event, such as

the periodic execution of some procedures in the

database (e.g., the scheduled database record cleaning

function) A XSS attack consists of injecting HTML and

scripting (usually Javascript) in a vulnerable webpage.

It exploits the common utilization of the user input

(without sanitizing it first) as a building part of a

webpage. When this occurs, by tweaking the input, the

attacker some of its functions, allowing him to take

benefits of users visiting that webpage. This attack

exploits user confidence (victim) has on the website,

allowing the attacker to impersonate these users and

even execute other types of attacks such as cross site

request forgery (CSRF) [29]. The injection of XSS can

also be persistent if the malicious string is stored in the

back-end database of the web application, therefore

potentiating its malicious effects in a much broader

way.The methodology relies on this paper is the results

of the field study presented in [16] to define the types of

vulnerabilities to be injected (fault models), which match

the most common types of vulnerabilities found in web

applications in the field. These vulnerabilities are

injected according to a set of representative restrictions

and rules previously proposed in [17] and then attacked.

3.METHODOLOGY

 In this section we present the method for testing

security mechanisms for web applications. The method

is based on the injection of realistic weakness and the

subsequent controlled exploit of those vulnerabilities in

order to attack the system. This provides a real time

environment that can be used to test counter measure

mechanisms (such as IDS, web application vulnerability

scanners etc.), train and evaluate teams, estimate

security measures (like the number of vulnerabilities in

the code, in a same way to defect seeding [31]),

compared to others. To provide a realistic environment

we must consider true to life vulnerabilities. As

mentioned before, we rely on the results from a field

study presented in [16] that classified 655 XSS and

SQLi security patches of six widely used LAMP web

applications. This data allows us to define where a real

vulnerability is usually located in the source code and

what is the piece of code that is responsible for the

presence of such vulnerability.

 3.1Overview of the Methodology

Our Vulnerability & Attack Injection method for SQLi

and XSS can be applied to a variety of technologies, but

the upcoming description uses as reference for a web

application, with a web front-end and ZUIUX. an access

to a back-end database is used to store the dynamic

content and business data The vulnerabilities are

injected in the web application following some a realistic

pattern The information about what was inserted is fed

to the injection mechanism mainly for improving the

attack success rate .the attack injection uses external

explore two: one for the HTTP and other for the

database . These probes monitor the HTTP and ..SQL

data exchanged, and send a copy by the attack injection

mechanism. This is a key factor for this methodology to

obtain interaction of the user and the results produced by

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

641

All Rights Reserved © 2016 IJARTET

such a interaction , so they can be used for attack

preparing. Therefore, the attack injection mechanism is a

important inner workings of the application . For

instance, this provides insights on what piece of in order

supplied to a HTML FORM is used to build the SQL

query and in which question part it is going to be

inserted. The whole process is performed automatically,

without human work. For example, consider the

evaluation of an IDS:, when the IDS inspects the SQL

query sent to the database, the VAIT also monitors the

IDS output to find if the molest has been detected by the

IDS or not. We just have to collect the results of the

attack injection, which also contains, the IDS detection

output.

The automated attack of a web app is a multiple stage

procedure that includes: preparation , vulnerability

injection, attack load generation and error.

3.2. Preparation stage:

In the early stage, the web application is interacted

(crawled) executing all the functionalities that need fro

testing. Both HTTP and SQL languages are captured by

the two errors and processed for future use .The

interaction with the web application is done from the

client’s view (the web browser). The outcome of this

stage is the relationship of the input and the HTTP

variables carry them and their respective source code

files, and its use in the fIIormat of the database queries

sent to the back-end storage(for SQLi) or displayed back

to the web browser (for XSS). Later on, in the attack

stage, the malicious action can be done by tweaking the

values of the variables, which correspond to the combo

boxes discovered.

3.3.Vulnerability Injection Stage:

 It is in this vulnerability injection stage that

weaknesses are injected into the web application. For

this purpose, it needs content about which variables of

input carry relevant information that can be used to

execute attacks. This starts by analyzing the source

code of the files searching for locations . The injection of

vulnerabilities is done by clearing the protection of the

target like the call to a sanitizing This process follows

the realistic patterns. Once it find a location, it performs

a mutation to inject one vulnerability in that specific

location. The alter in the code follows the rules, which

are described and implemented as a set of Vulnerability

Operators.

These are built upon a group of attributes: the Location

Pattern and the weakness ability Code modify. The

Location Pattern defines the situations that a specific

type of vulnerability must comply with and the

Vulnerability Code Change specifies the event that must

be performed to inject this vulnerability, depending on

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

642

All Rights Reserved © 2016 IJARTET

the environment where the weaknesses is going to be

injected. In order to clarify the concept of the

Vulnerability Operators, let us analyze the following

example. One of the Location Pattern restrictions for the

missing function call extended sub type A (MFCE - A),

is the search for the“intval”1 PHP function when the

argument is related to an input value (a value coming

from the outside) and the result is going to be used in a

SQL query string. Consider, for example, this sample

piece of code: “$id ¼ time ($_GET[‘id’]);”. If the

variable “$id” is going to be used in a query, then the

Vulnerability Code Change consists of removing the

“interval” function from the source code in order to

inject a vulnerability. As can be seen, by removing the

function the resulting code becomes $id ¼

$_GET[‘id’];which acts as a vulnerable to a SQLi attack

by putting the rate “15 or 1 ¼ 1” to the “$id” variable,

the SQL query is executed without considering other

constraints in the “where” condition. Recall that 1 ¼ 1

is always true, therefore affecting every row, which was

not the intended behavior as coded by the developer of

the application. The vulnerability and attack injection

uses both dynamic analysis and static analysis to gather

the data needed to apply the vulnerability operators. This

analysis obtains not only the input variables (IV) that

will be part of an output variable (OV), but also the

chain of variables in between. If the web application is

secured, one of the variables in the chain is sanitized or

filtered We call this variable our target variable (TV),

because it is the one that the vulnerability injection stage

will try to make vulnerable by removing or changing the

protection scheme, according to the Vulnerability

Operators. To inject a vulnerability using the

Vulnerability Operators we need the information about

the target variable and the code location (CL) where it is

sanitized or filtered {TV, CL}.In the preparation stage

(based on the dynamic interaction executed by the

crawler) we obtain the pairs fIVðdynamic analysisÞ;

OVðdynamic analysisÞg, which are the set of input

variables ðIVðdynamic analysisÞ) whose values come

from the HTTP interaction or the SQL communication

and their mapping with output variables ðOVðdynamic

analysisÞ). On the other side, the vulnerability injector

tool performs a static analysis on the source code and

finds the input variables ðIVðstatic analysisÞ) that are

expected to be seen in the output ðOVðstaticssss

analysisÞ) as part of the HTML response, SQL queries,

etc. It also provides the target variable ðTVðstatic

analysisÞ) and the code location ðCLðstatic analysisÞ)

of the place in the file where the target variable is

sanitized or filtered. Overall, the static analysis provides

the following set of attributes: fIVðstatic analysisÞ;

OVðstatic analysisÞ; TVðstatic analysisÞ; CLðstatic

analysisÞ}.This process of using unstable and stable

results provides the best of both words to get the

variables and the location where they are sanitized or

filtered and the set of constraints given by the code

location necessary by the Vulnerability Operators. The

correlation of variables resulting from both static and

dynamic analysis originates a more precise set of

locations where the Vulnerability Operators may be

used. The outcome of this correlation is an improved

collection of vulnerabilities that has a higher rate of

exploitability by the attack injectionmechanism. The

data must be provided by the set of attributes that come

from the static analysis {IVðstatic analysisÞ; OVðstatic

analysisÞ; TVðstatic analysisÞ; CLðstatic analysisÞ},

but improved by the pair of attributes that come from the

preparation stage {IVðdynamic analysisÞ, OVðdynamic

analysisÞ} (Fig. 4). It considers the data from the set of

attributes {IVðstatic analysisÞ; OVð static analysisÞ;

TVðstatic analysisÞ; CLðstatic analysisÞ} but only

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

643

All Rights Reserved © 2016 IJARTET

whose pairs {IVðstatic analysisÞ, OVðstatic analysisÞ}

are equivalent to any of the {IVðunstable analysisÞ,

OVðdynamic analysisÞ}. The procedure for data

processing from dynamic and static analysis to obtain

the match outcomes consisting of the pair of target

variable.

and code location {TV, CL} needed to apply the

vulnerability operators is exemplified in Fig. 5. As a

result of this vulnerability injection process, we obtain a

copy of the original web application file with a single

weaknesses injected. This procedure can be

automatically repeated until all the locations where

realistic vulnerabilities can be injected are identified and

all the corresponding vulnerabilities are injected,

resulting in a set of files, each one with one possible

vulnerability added.

3.4.Attack Load Generation Stage:

 After having the set of copies of the web application

source code files with vulnerabilities injected we need to

generate the group of malicious interactions (attack

loads) that will be used to attack each vulnerability. This

is done in the attack load stage. The attack load is the

malicious data activity needed to attack a given

vulnerability. This data is built around the

communication patterns derived from the starting stage,

by tweaking the input values of the vulnerable variables.

The value that is assigned to the vulnerable variable, in

order to attack it, results from a fuzzing process. In this

process, the malicious value is obtained through the

manipulation of the data provided by the good values of

the vulnerable variable, the prefix (>,),’,”, . . .) and the

the use of attack load strings and predefined functions .

The fuzzing process consists of combining the available

collection of prefixes, attack load strings and suffixes.

For example, let us suppose that the variable may

convey the value John and that its protection scheme has

been removed by the vulnerability injection stage. In this

case, one of the attack loads for SQLi assigns to the

variable something like: “John’ +and+ ’A’ ¼ ‘A”. In this

attack, the John is the good value of the known

vulnerable variable, the ‘ is the prefix, the +and+ ’A’ ¼

‘A is the attack load string and there is no suffix (for this

specific example). The þ signs (they could as well be

%20) are the URL encoded values of the space

character, so the string can be used to build the

malicious HTTP packet that will be sent to the web

application by the attack injection mechanism. This

stage also generates the payload footprints that have a

one to one relationship with the attack payloads. The

payload footprints are the expected result of the attack.

They can be the malicious SQL queries text sent to the

database, for the case of an SQLi attack; or the HTML of

the web application response, for the case of a XSS

attack. These payload footprints are fundamental, since

they are used to assess the success of the attack.

3.5.Attack Stage

 In the attack stage, the web application is interacted

again. However, this time it is a “malicious” contact

since it consists of a collection of attack payloads for

exploit the vulnerabilities injected. The attack involves

for altering the SQL query sent to the sender of the web

application (for the case of SQLi attacks) or the HTML

data sent back (for the case of XSS attacks). The

vulnerable source code files are applied to the web

application.Once again the two probes are deployed and

the collection of attack loads is submitted to use the

vulnerabilities injected.The interaction with the web

application is done from the web client’s point of view

(the web browser) and the attackload is applied to the

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

644

All Rights Reserved © 2016 IJARTET

input part of the variables (the text fields, combo boxes,

etc., present in the webpage interface). At the end, we

assess if the attack was done. The detection of the

success is done by searching for the presence of the

payload footprint in the data (HTTP or SQL

communications) captured by the two probes. This is

repeated until all the injected vulnerabilities have been

attacked.

4. Vulnerability Attack Injector Tool:

 To express the feasibility of the proposed

attack injection methodology we developed a sample

tool: the Vulnerability& Attack Injector Tool (VAIT,

Vulnerability-and-Attack-Infused). For our make

inquiries purposes the prototype presently focuses on

SQLi, as it is one of the mainly important vulnerabilities

of web applications today. Promote more,SQLi is also

responsible for some of the large severe attacks in web

applications . As nowadays, the most costly asset of such

applications is their back-end database. For this cause

we have chosen to implement first the SQLi type in our

tool, although the XSS is fairly similar in the key

aspects. The VAIT sample targets Linux, Apache, My

SQL and PHP web applications, which is mainly one of

the most normally used solution heap to develop. Future

improvements of the sample may include other attacks

types (e.g., XSS) and application technologies (e.g.,

Java).

 Monitoring is implemented using built-in proxies

particularly developed for the HTTP and for the SQL

communication.These proxies send a copy of the entire

packet data traversing them through the configured

socket ports to the HTTP Communication Analyzer and

MySQL Communication Analyzer mechanism. Proxies

run as independent processes and threads, so they are

relatively independent. To guarantee organization with

other components of the VAIT, aSync mechanism was

also built-in (Fig. 8). The organization obtained by

executing each web application interface in sequence

without overlapping (i.e., without the common use of

concurrent threads to speed up the process) and

gathering the precise time stamps of both the HTTP

communication and respective SQL query. As shown in

Fig. 9,The interaction starts with the client actor sending

one HTTP request that may lead SQL query requests to

be sent to the database server. Next, the database server

responds to the SQL query requests and sends the

response back to the web application server. Finally, the

application server sends the HTTP response back to the

client actor. When the HTTP and SQL proxies imprison

these serialized operations they also register their time

stamps, which allows the Sync mechanism to group this

distributed set of actions into meaningful cause effects

sequences.

 The information gathered by both proxies
contains the organization of each webpage, the
associated input variables,typical values and the
unrelated SQL queries where these variables are used.
During this dealings, the list of the web application files
that are being run is also sent to the integrated
Vulnerability Infuser as input files. The vulnerability
injector component is executed for each one, delivering
the respective group of files with injected vulnerabilities.
The next component is the Variable Analyzer. Because
SQL vulnerabilities rely on vulnerable variables that can
be exploited, we have to analyze all the variables that are
used to build SQL queries. This component gathers all
the PHP variables from the source code and builds a
mesh of dependencies related to each other. Then, it
searches for PHP variables present in SQL query strings.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

645

All Rights Reserved © 2016 IJARTET

Using the mesh created, the component is able to
determine all the variables that are indirectly responsible
for the SQL query.Both variables that are directly and
indirectly responsible for SQLi are considered as a valid
target to inject a vulnerability.This is important as one
variable may be used only as input (POST or GET
HTTP parameters) and the result is passed to another
variable that is the one that is in the SQL query string.
All the other variables are discarded.
The last component is the Vulnerability Injector. During
execution, every location where the selected variables
are found is tested with the conditions and restrictions of
the vulnerability operators filtering those that are not
applicable. The Vulnerability Operators, consisting of a
set of Location Pattern and Vulnerability Code Change
attributes, as explained in Section 3.3, are derived from
the detailed analysis of data .The vulnerability injector
component uses the Vulnerability Operator data and the
result is the information about the mutation that has to be
made in the source code in order to inject a particular
vulnerability. Both the original source code and the
mutated code (vulnerability injection code) are stored in
the internal database of the VAIT for future consumption
(e.g., during the execution of the Attack Stage).

Each of the vulnerable variables must be attacked and
for that purpose, the Attack load Generator creates a
collection of malicious interactions, according to the
characteristics of the target variables. This attack load
intends to inject unwanted features in the queries sent to
the database, therefore performing SQLi. The collection
of predefined attack load strings are based on the basic
attacks presented in Table 2, but they can be extended
covering other cases, like those presented by [35] or
derived from field study data about real attacks [36].
Also, different database management systems have their
own peculiarities on how they can be interacted and even
different implementations of the SQL language have
specific characteristics that can be exploited during a
SQLi attack [37]. Every attack string is assigned to the
vulnerable variable trying to create some sort of text that

can penetrate the breach produced by the vulnerability
injected (as shown previously in Fig. 7). Some tweaks
are done to the attackload strings, such as encode some
parts using the URL encoding function. The Attack load
Footprint Generator component builds the collection of
attack load footprints so that they have the data that is
expected to be seen in the query, if the attack is
successful.
At the end it is necessary to verify if the attack was
successful or not. This is done by the Attack Success
Detector component. The attack is successful if, as a
result of the execution of the attack load, the structure of
the SQL query is altered [38]. This occurs when the
attackload footprint is present in the query in specific
conditions. Cases where the attack load footprint is
placed inside a string variable of the SQL query are not
considered, because usually a string can convey any
combination of characters, numbers and signs. In the
other cases, if it is possible to alter the structure of the
query due to the attack load, then there is a successful
SQLi attack. One final statement about the VAIT is that
it does not try to exploit the vulnerability in the sense of
obtaining, altering, deleting, etc., sensible information
from the web application database. It only tries to
evaluate whether some particular instance of the web
application is vulnerable to such attacks or not. The
VAIT also stores the SQL query string executed during
the attack and the specific vulnerability exploited for
later analysis. The output information given by the
VAIT is the most important outcome and is a
fundamental piece of data for enterprises and security
practitioners.
This data allows developers of the tool underassessment
to correct the weaknesses discovered during the attack
process. An example of an improvement of an IDS for
databases that resulted from the output of the VAIT.
 5.Attack Injection Utilization:

and correlating their data (e.g., HTTP and SQL

interaction. To discuss the following two scenarios as

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

646

All Rights Reserved © 2016 IJARTET

the most suitable utilizations of the proposed attack

injection methodology and its tool:

5.1. Inline. The VAIT is executed while the safety

assurance mechanisms are also being executed.

5.2. Offline. The VAIT is executed to provide a set of

pragmatic vulnerabilities for later use. Inline Scenario In

the scenario,It can be used to evaluate tools and security

mechanisms, For example, when assessing an IDS for

databases , the SQL probe should be before the IDS,IDS

is located between the SQL probe and the database

During attack stage, when the IDS inspects query sent

to the database, the attack injector tool monitors the IDS

output to identify if the attack has been detected by the

IDS or not. The whole process is automatically secured,

without human intervention.The output of the VAIT also

contains, the logs of the IDS detection. By attack

analyzing that were not detected by the IDS, the security

practitioner can gather insights on the IDS weaknesses

and, possibly, how the IDS could be improved. his

procedure has already been used to test five SQLi

detection mechanisms. In the offline concept, the VAIT

injects vulnerabilities and attacks them to check if they

exploited or not. The output is the set of vulnerabilities

in a Basic Attack Payload String Examples

FONSECA ET AL.: EVALUATION OF WEB

SECURITY MECHANISMS USING

VULNERABILITY & ATTACK INJECTION

447consists of variety of situations to provide a test bed

to train and evaluate security teams perform code review

or penetration testing for static code analyzers, to

estimate the number of vulnerabilities in the code, to

evaluate web application vulnerability scanners, etc. It

may provide a ready to use test bed for web application

security tools that can be integrated into assessment tools

like the Moth [40] and projects like the Stanford

Security Bench [41], or in web applications installed in

honey pots prepared to collect data about how hackers

execute their attacks. This gathers insights on how

hackers operates, want to attack and how they are using

the weaknesses to attack other parts of the system. The

offline scenario can also be applied to assess the quality

of test cases developed for a given web application. For

example, assuming that the test cases cover all the

application functionalities in every situation, if the

application code is changed (via vulnerability injection),

the test cases should be able to discover that something

is wrong. In situations where the test cases are not able

to detect the modification, they should be improved and,

maybe, the improvement can even uncover other

unknown faulty situations. As an example, let us

consider the assessment of web application vulnerability

scanners, used to test for security problems in deployed

web applications (see Section 6.3 for a case study).

These scanners perform black-box testing by interacting

with the web application from the point of view of the

attacker. She VAIT injects vulnerabilities and attacks

them to see those that can be successfully attacked.

These vulnerabilities are used, one by one, to assess the

detection capability of the web application vulnerability

scanner. This procedure can be used to obtain the

percentage of vulnerabilities that the scanner cannot

detect, and what are the most difficult types to detect. In

this typical offline setup, the vulnerabilities can be

injected one at a time (like in the case of vulnerability

scanners) or multiple vulnerabilities at once (for the

case of training security assurance teams, for example).

 5.3. Attack Scenario Remarks

 Obviously, the penalty of the attack (the “failure”

and its severity) are dependent on the concrete situation,

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

647

All Rights Reserved © 2016 IJARTET

on what is compromised (credit card numbers,

passwords, emails, etc.), on how it is compromised

(information disclosure, ability to alter the data or to

insert new data, etc.) and on how valuable is the

compromised asset (the value to the company, to the

client from which the information belongs, to the

companies operating in the same market, etc.) [10].

Although it is not a direct goal of the attack injection

methodology presented here it can, however, provide

important insights about security related issues allowing

further analysis to obtain data about the consequences of

the attack.To avoid attacks, web application developers

are currently reducing the number of error messages

displayed to the user. This does not prevent SQLi

attacks, but makes it harder to identify SQLi

vulnerabilities using the black-box approach. However,

after the vulnerability is found it is as easy to exploit as

it was before. One consequence of this trend is an

extraordinary increase in the false-positive and false-

negative rates of black-box testing tools such as

automatic web application vulnerability scanners [42],

[27]. This also applies to other security mechanisms that

use the same methodology, like the SQLmap sponsored

by the OWASP project, for example [43]. The attack

injection approach described in this chapter is quite

immune to this countermeasure technique, because of

the way the data used for the analysis is obtained:

through the use of probes placed in different layers of

the web application setup and correlating their data (e.g.,

HTTP and SQL interactions).

An attack can be considered successful if it leads to

an“error” [14]. Obviously, the consequences of the

attack (the “failure” and its severity) are dependent on

the concrete situation, on what is compromised (credit

card numbers,passwords, emails, etc.), on how it is

compromised (information disclosure, ability to alter the

data or to insert new data, etc.) and on how valuable is

the compromised asset (the value to the company, to the

client from which the information belongs, to the

companies operating in the same market, etc.) [10].

Although it is not a direct goal of the attack injection

methodology presented here can, however, provide

important insights about security related is allowing

further analysis to obtain data about the consequences of

the attack. To avoid attacks, web application developers

are currently reducing the number of error messages

displayed to the user. This does not prevent SQLi

attacks, but makes it harder to identify SQLi

vulnerabilities using the black-box approach. However,

after the vulnerability is found it is as easy to exploit as

it was before. One consequence of this trend is an

extraordinary increase in the false-positive and false-

negative rates of black-box testing tools such as

automatic web application vulnerability scanners [42],

[27]. This also applies to other security mechanisms that

use the same methodology, like the SQLmap sponsored

by the OWASP project, for example [43]. The attack

injection approach described in this chapter is quite

immune to this countermeasure technique, because of

the way the data used for the analysis is obtained:

through the use of probes placed in different layers of

the web application setup

6.Conclusion:

 This paper produces a novel method to

automatically inject realistic attacks in web applications.

This methodology consists of analyzing the web

application and generating a set of potential

vulnerabilities. Each vulnerability and various attacks

are injected are mounted over each one. The success of

each attack is automatically assessed and reported. The

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

648

All Rights Reserved © 2016 IJARTET

realism of the weaknesses injected derives from the use

of the results of a large field study on real security

vulnerabilities in widely used web applications. This is,

in fact, a key aspect of the methodology, because it

intends to attack true to life vulnerabilities. To broaden

the boundaries of the methodology, we can use up to

date field data on a wider range of vulnerabilities and

also on a wider range and variety of web applications.

To demonstrate the feasibility of the methodology, we

developed a tool that automates the whole process: the

VAIT. It is a prototype, it overcomes implementation

specific issues. It emphasized the need to match the

results of the dynamic analysis and the static analysis

and the need to synchronize the outputs osf the HTTP ,

SQL probes, which all executed as autonomous and

computers. All these results must produce a single log

analysis containing both the input and the output results.

The VAIT prototype focused fault type, the MFCE

(vulnerabilities caused by a missing function) generating

SQLi vulnerabilities. this fault type represents majority

of all the faults classified in the field and can be

considered the other fault types can also be

implemented, namely those that come next concerning

their relevance. The experiments have shown that the

proposed methodology can effectively be used to

evaluate mechanisms for security like the IDS,

providing at the time indications of what could be

developed. By injecting weaknesses and attacked

automatically. the VAIT could find weaknesses.These

results were very important in developing bug fixes (that

are already applied to the IDS software helping in

delivering a better product). they also used to evaluate

two most widely used web application vulnerability

scanners, find and concerning ability for detecting

SQLi vulnerabilities in web applications. These scanners

were unable to identify vulnerabilities .Inspite of the

fact that some is seem to easily beS and confirmed by

the scanners. there is a technique for improving the

SQLi detection capability.

ACKNOWLEDGEMENTS:

This work was partly supported by Intelligent

Computing in the Internet of Services”. in the scope of

the Mias Centro Program.

REFERENCES:
[1] USA, “Sarbanes-Oxley Act,” 2002.
[2] Payment Card Industry (PCI) Data Security Stan-
dard, PCI Standards Council, 2010.
[3] S. Christey and R. Martin, “Vulnerability Type Dis-
tributions in CVE,” Mitre Report, May 2007.
[4] S. Zanero, L. Carettoni, and M. Zanchetta, “Auto-
matic Detection of Web Application Security Flaws,”
Black Hat Briefings, 2005.
[5] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise
Alias Analysis for Static Detection of Web Application
Vulnerabilities,” Proc. IEEE Symp. Security Privacy,
2006.
[6]D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and
R.K. Iyer, “NFTAPE: A Framework for Assessing De-
pendability in Distributed Systems with Lightweight
Fault Injectors,” Proc. Computer Performance and De-
pendability Symp., 2000.
[7]J. Christmansson and R. Chillarege, “Generation of
an Error Set that Emulates Software Faults,” Proc. IEEE
Fault Tolerant Computing Symp., 1996.
[8] H Madeira, M. Vieira, and D. Costa, “On the Emula-
tion of Software
Faults by Software Fault Injection,” Proc. IEEE/IFIP
Int‘l Conf. Dependable System and Networks, 2000.
[9] J. Dur~aes and H. Madeira, “Emulation of Software
Faults: A Field Data Study and a Practical Approach,”
IEEE Trans. Software Eng., vol. 32, no. 11, pp. 849-867,
Nov. 2006.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 2, March 2016

649

All Rights Reserved © 2016 IJARTET

[10] N. Neves, J. Antunes, M. Correia, P. Ver_ıssimo,
and R. Neves, “Using Attack Injection to Discover New
Vulnerabilities,” Proc. IEEE/IFIP Int’l Conf. Dependa-
ble Systems and Networks, 2006.
[11]. G. Buehrer, B. Weide, and P. Sivilotti, “Using
Parse Tree Validation to Prevent SQLi Attacks,” Proc.
Int’l Workshop Software Eng. and Middleware, 2005.
[12]. I. Elia, J. Fonseca, and M. Vieira, “Comparing
SQLi Detection Tools Using Attack Injection: An Expe-
rimental Study,” Proc. IEEE Int’l Symp. Software Relia-
bility Eng., Nov. 2010.

