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Abstract—An approach is presented for 

influencing teams of robots bymeans of time-

varying density functions, representing rough 

references for where the robots should be 

located. A continuous-time coverage algorithm is 

proposed and distributed approximations are 

given whereby the robots only need to access 

information from adjacent robots. Robotic 

experiments show that the proposed algorithms 

work in practice, as well as in theory. 
 

Index Terms—Coverage control, multirobot 

teams, time-varying densityfunctions. 

 

I.  INTRODUCTION 
 

Coverage control for multirobot systems has 

received signif-icant attention lately, and it is 

concerned with how to position agents in such a 

way that “surveillance” of a domain of interest is 

maximized. This is typically achieved by 

associating a density function to the domain, as was 

done in [1]–[6]. However, the focus of previous 

coverage algorithms has largely been on static 

density functions. This does not provide enough 

flexibility when human operators are to adaptively 

interact with a team through a dynamic reshaping of 

the density functions, which is the topic under 

consideration in this paper.  

To enable this line of inquiry, we require an 

algorithm that can guarantee multirobot optimal 

coverage given general time-varying density 

functions. Applications to this beyond the means 

for multirobot influence can be found in a number 

of domains. For example, in search and rescue 

scenarios, the density function could represent the 

probability of a lost person being at a certain point 

in an area, e.g., [7]. Additionally, optimal coverage 

of density functions for multirobot surveillance and 

exploration was used in [5], where the density 

function was modeled to be a function of the 

explored “frontier.” (For other examples, see [8] 

and references therein.) To date, relatively little 

work has been done on coverage with time-varying 

density functions. In [1], the time-varying case was 

investigated under a set of simplifying assumptions 

on the density functions, while in [4] the density 

functions were used as a means to tracking moving 

targets. While simulations and experiments verified 

that coverage was indeed achieved, formal 

guarantees were absent.  
In contrast with [1] and [4], in this paper we 

derive an algo-rithm that guarantees optimal 

coverage, under certain assump-tions that will be 

further clarified along the text, and in general 

outperformed previous proposed approaches in 

simulation and robotic implementation. The outline 

is as follows. In Section II, the problem setup is 
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discussed in the context of locational 

costs that evaluate how effective given robot 

configurations are at achieving coverage. This is 

followed by the formulation of the main centralized 

algorithm for coverage with time-varying den-sity 

functions in Section III. A decentralized 

approximation based on truncated Neumann series 

is given in Section IV, and the different algorithms 

are implemented and compared with five mobile 

robots in Section V. 

 

II.  LOCATIONAL COSTS AND 

VORONOI TESSELLATIONS 
 

In order to discuss about optimal coverage, one 

has to first associate a cost to a robot configuration 

that describes how well a given area is being 

covered. To do this, we will follow the construction 

of the so-called locational cost, as was done, for 

example, in [1] and we stress that no results in this 

section are new—we simply include them for the 

sake of easy reference. 

Let D⊂R
2
 be the 2-D convex domain 

representing the area of interest. Moreover, let 

φ:D×[0,∞)→(0,∞) be the as-sociated density 

function, which we will assume is bounded and 

continuously differentiable in both arguments, and 

where φ(q, t)captures the relative importance of a 

point q ∈ D attime t.  

in D, and we let pi∈D, i= 1, . . . , n be the position of 
the ith robot. Moreover, the domain itself will be 
divided into regions of dominance, e.g., [2], P1, . . . , 
Pn (forming a proper partition of D), where the idea 
is to let robot i be in charge of covering region Pi . 
One can then ask how good the choice of p and P is, 
where p= [pT

1, . . . , pT
n]

T
 , and P={P1, . . . , Pn}. The final 

piece needed to answer this question is a measure of 
how well a given point q∈D is covered by robot i at 
position pi∈D (see [9] and references therein). As 
the performance of a large class of sensors 
deteriorate with a rate proportional to the square of 
the distance, the resulting locational cost is 
 

n 

_q−pi _
2φ(q, t)dq. 

  

H (p, P, t) = 
(II.1
)  

i= 1 P i   
 

At a given time t, when a configuration of robots 

p together with the partition P minimize (II.1), the 
domain is said to be optimally covered with respect 

to φ. However, it is possible to view the 

minimization problem as a function of p alone [1], 

by observing that given p, the choices of Pi that 
minimize (II.1) is 
 

Vi(p) ={q ∈ D|_q − pi_≤_q − pj_ , i _= j} . 
 

This partition of D is a Voronoi tessellation—hence, 

the use of Vi to denote the region. With this choice 
of region, we can remove the partition as a decision 
variable and instead focus on 
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the locational cost 

   n 

Vi(p)
_q−pi _2φ(q, t)dq.

 

  

H (p, t) = i= 
1 

(II.2
)  

      

In [10] and [9], it was shown that   

 ∂H     

  

=

 

−2(q − pi)
Tφ(q, t)dq 

(II.3
) 

 

 ∂pi 
V 
i   

and since φ >0, one can define the mass mi and center 

of mass ciof the ith Voronoi cell Vias 

mi(p, t) = φ(q, t)dq, ci(p, t) = 

V 
i(p ) qφ(q, t)dq  

  

. 

 

   

 V i(p )  mi  

   (II.4)  
Using these quantities, the partial derivative in 

(II.3) can be rewritten as 

∂H 
= 2mi (pi−ci )

T. 
(II.5
) 

 

∂pi  
 
From this expression, we can see that a critical 

point of (II.2) is 

pi(t) = ci(p, t),   i = 1, . . . , n

 (II.6

) 
 
and a minimizer to (II.2) is necessarily of this form 

[11]. More-over, when (II.6) is satisfied, p is the so-
called centroidal Voronoi tessellation (CVT).  

The robots being in a CVT configuration does 
not, however, imply that the global minimum of 
(II.2) is attained, e.g., [9]. In fact, the CVT is in 

general not unique given a density function φ. 
Finding the globally minimizing configuration is a 
difficultproblem due to the nonlinearity and 
nonconvexity of (II.2), as discussed in [12]. As 

such, in this paper, we are interested in de-signing 
algorithms that guarantee convergence to local 
minima with respect to time-varying density 
functions, and we make no claims about finding the 
global minimum.  

In light of (II.5), the gradient direction (with 

respect to pi ) is given by pi−ci . As such, a (scaled) 
gradient descent motion for the individual robots to 
execute would be  

Lloyd:  

p˙i=−κ(pi− ci)

 (II.7

)  

where κ is a positive gain. This is a continuous-time 
version of Lloyd’s algorithm [13] for obtaining 

CVTs as long as φ does not depend on t. The way to 

see this, as was done in [2], is to take H (p)in (II.2) 

(note that we assume that H only depends on p and 

not on t for the purpose of this argument) as the 
Lyapunov function 

 
d 

n  

∂ 
n  

   

H (p)p˙i=−2κmi_pi− ci_
2 . 

 

 

 

H (p) = 

    

dt i= 
1 

∂pi  

     i= 1  
 
By LaSalle’s invariance principle, the multirobot 
system asymp-totically converges to a configuration 

{_pi−ci_
2

= 0, i=1, . . . , n}, i.e., to a CVT, [2].  
However, if φ is time-varying, the same control 

law does not stabilize the multirobot system to a 
CVT. This point can be hinted at by investigating 
the evolution of a time-dependent 
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H (p, t), 
 

 
d 

 n 
∂ 
    

∂ 
    

 

H (p, t) = 

  

H (p, t)p˙i+ H (p, t) 

   

 

dt 

    

∂t 

   

  i= 
1 

∂pi      

              
  n   

2 ∂φ 
  n 

2
  

= _q−pi _ (q, t)dq− 2κmi_pi− ci_ .

 

  ∂t    

  i= 1
V i         i= 1    

There is no reason, in general, to assume that this 

expression is negative since we do not want to 

impose assumptions on slowly varying, or even 

quasi-static density functions. Instead, what is 

needed is a new set of algorithms for handling the 

time-varying case, which is the topic of the next 

section. 

 

III.  TIME-VARYING DENSITY 

FUNCTIONS 
 

To get around the problem associated with 
nonslowly varying density functions, timing 
information must be included in the motion of the 
robots. In [1], this was done through the assump-

tion that φ(q, t) is such that 
 
   

d 
n 

_q−ci _
2φ(q, t)dq= 0. 

 

     

      

   dt
i= 1 

 

    V i     
Lettin

g          

m˙i= 

  ˙   1 ˙  

V 

i φ(q, t)dq, c˙i= mi 

V 

i qφ(q, t)dq − mi ci  
 
the algorithm in [1] for time-varying density 

functions is given by  

Cortes:      

 m˙i    

p˙i= c˙i− k + 

 

(pi−ci ). 
(III.1
) 

 

mi  
 

Under the previously mentioned assumption on φ, 

H(p, t) again becomes a Lyapunov function when the 
agents move according to (III.1), and convergence 
to a time-varying CVT is established.  

Unfortunately, the assumption required to make 
(III.1) work is rather restrictive and for the 
remainder this paper, we will develop new methods 
for handling time-varying density func-tions that do 

not impose major assumptions on φ(q, t). In fact, if 
the density function is to be thought of as an 
external human-generated input to the system, there 
are no a priori reasons why the human operator 
would restrict the interactions to satisfy particular 

regularity assumptions on φ.  
One way forward is to note that if we are already 

at a CVT at time t0 , i.e., p(t0) =c(p(t0), t0)), where c= 

[cT
1, . . . , cT

n]
T
 it should be possible to maintain the 

CVT. In other words, if we  
can enforce that 

d 
(p(t) −c(p(t), t)) = 0 ∀t≥t0 

 

dt  
 
the time-varying CVT would have been maintained. 

This means that 

p˙ = c˙ =∂p
∂c p˙ +

∂c
∂t  
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IEEE TRANSACTIONS ON 

ROBOTICS, VOL. 31, NO. 2, APRIL 2015 
 
 

which rearranges to         

p˙ =   I − 

∂c   −1 ∂c 

(III.2
) 

 

   

 

 

. 

 

∂p ∂t  
As such, we have established the following 
result.   

Theorem III.1:  Letp(t0) =c(p(t0), t0). If   

p˙ =   I − 

∂c −1∂c

, t ≥ t0 

  

 

 

     

∂p   ∂t   
 
then 
 

_p(t)−c(p(t), t)_ = 0, t≥t0  

as long as the inverse (I−∂c/∂p)
−1

  is well defined. 

There are a number of issues that must be 
resolved about the evolution in (III.2), namely 1) 
When is the inverse well-defined?; 2) How can one 

ensure that p(t0) =c(p(t0), t0)?; 3) How is ∂c/∂p 

computed?; and 4) Is it possible to implement this 
in a distributed manner? The first question is in 
general quite hard to answer. In [14], it was shown 
that in the time-invariant case, the inverse is well 

defined as long as φ(p) is a log-concave function of 

p. Moreover, we need φ to be continuously 

differentiable in both arguments, and these two 
conditions are enough to ensure that the inverse 
exists. However, this is not particularly satisfying 
and it does indeed pose a major challenge to the 
ambition of providing algorithms that can handle 
general time-varying density functions. As will be 
seen in Section IV, it is possible to get around this 
restriction while, at the same time, answer the 
fourth question through the introduction of a well-
posed Neumann approximation of the inverse as a 
mechanism for achieving distributed versions of the 

algorithm. The answer to the remaining two 
questions will be discussed below.  

The first issue to be addressed is the constraint 

that p(t0) =c(p(t0), t0)for some initial time t0. This is, 
practically speaking,easily achievable by adding a 
proportional term that forces the robots to a CVT,  

TVD-C:          

p˙ =   I − 

 ∂c −1 

−κ(p − c) + 

∂c 

(III.3
) 

 

   

 

 

. 

 

∂p  ∂t  
 
We denote this algorithm TVD-C, where TVD 

stands for time-varying densities, and C stands for 

centralized, as will be dis-cussed in subsequent 

sections. Note that if a CVT is perfectly achieved, 

then the proportional term does not contribute any-

thing to the update law, and the result in Theorem 

III.1 still ap-plies. Although we do not present a 

formal proof of convergence for (III.3), it has been 

verified in simulation and experiments that a CVT 

can be achieved using this controller, even in the 

case when the robots are far from a CVT 

condition.  
The second issue with (III.2) is the 

presence of the term ∂c/∂p. Even though this 
might look innocent, this term is rathercomplicated, 
due to the fact that  

ci(p, t) = qφ(q, t)dq φ(q, t)dq 
V i(p ) V i(p ) 

 limk→∞ 
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which depends on p in the boundary of the area over 
which the two integrals are taken. As a result, 
Leibniz rule must be exercised.

1
 

 
IV.  DISTRIBUTED 

APPROXIMATIONS 
 

Given a Voronoi partition, we will denote the 

boundary be-tween two cells by ∂Vij . In the planar 
case, this boundary is either empty (Voronoi cells 
do not intersect), a single point (Voronoi cells 
intersect at a single vertex) or a line (Voronoi cells 
share a face). The two Voronoi cells are said to be 
adjacent if they share a face, and we denote the set 

of cells adjacent to cell i by NVi .  
Now, suppose that i_∈NVj . This means either ∂Vi,j 

is empty or consists of a singleton. This moreover 

implies that any in-tegrals over ∂Vi,j are zero, and 
Leibniz rule tells us that these 
integrals are what define 

∂ ci
  , from which we can 

conclude that 
∂ p j 

∂ ci
    = 0. As such, we have the following result. 

∂ p j 

Lemma IV.1:  

i_∈NVj⇒ 

 
∂ 

c i 

= 0.

 
∂ p 

j  

A direct consequence of Lemma IV.1 is that ∂c/∂p 
encodes adjacency information and, both 
algorithms in (II.7) and (III.1) are distributed in this 

manner, i.e., the update rule for p˙i only depends on 

pj if j∈NVi . This, however, is not the case with 

(III.3) since even though ∂c/∂p has the right sparsity 

structure, (I−∂c/∂p)
−1

does not. In fact, the inverse 
renders the resultingmatrix dense and all sparsity 
structure is lost. The purpose of this section is thus 
twofold: 1) to develop a distributed approximation 
to (III.3) and 2) to overcome the restrictions 

associated with φ for the inverse in (III.3) to exist.  
Lemma IV.2 (Neumann series):  Let A be a 

square matrix. If 

Ak
= 0, then I − A is invertible and 

(I−A)
−1

  = I + A + A2
  + A3

  + . . . .  
Moreover, for a m×m square matrix A, limk→∞Ak

= 0 

if and only if |λi|<1 for all i= 1,2,· · · , m, where λi are the 

eigenvalues of A. As such, let λm a x denote the 
eigenvalue with the largest magnitude of the matrix 

∂c/∂p. Using the Neumann 

series, we can express (I−∂c/∂p)
−1

  as   

  ∂c

−
1   ∂c

+

 ∂c 2  

I − 

   

= I + 

    

+ . . .

 

∂p ∂p ∂p  

as long as |λm a x|<1. 

Now, if we insist on only letting p˙i depend on pj, 

j∈NVi , (as well as pi itself) we can truncate the 
series after just two entries 

I −∂p
∂c−1
≈ I +∂p

∂c
 

 
which gives the update law (modified from (III.3)),  

p˙ =   I + 

∂c 

−κ(p − c) + 

∂c  

   

∂p ∂t  

 
1
The resulting line and area integrals are 

practically computed using numer-ical 
approximations (e.g., Riemann sums, Gaussian 
quadrature) in the robotic implementation and for 

human-generated densities, the partial ∂ φ/∂ t can be 
approximated by a finite difference scheme. 
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492 
 
 
or at the level of the individual 
robots     

TVD-

D1 :       

p˙i= 

∂ci 

− κ(pi − ci) + 

 ∂ci ∂cj 

− κ(pj  − cj) 

 

∂t  ∂pj  ∂t  

   j∈N V i     

(IV.

1) where the label denotes time-varying-density, 

decentralized with 1-hop adjacency information.  
It should be noted that (IV.1) is always well 

defined (as long as φ is continuously differentiable). 
In other words, even if the Neumann series is not 
convergent or if the inverse does not exist, the 
entries in (IV.1) are well defined.  

One can now investigate what happens when 
higher order terms are kept in the Neumann series. 

For this, we let dist(i, j) denote the distance between 

cells i and j,2 and as ∂c/∂p is a (block) adjacency 
matrix, we have that 

(∂c/∂p)
k
 _= 0⇒dist(i, j)≤k, k= 0,1,2, . . . 

ij  

where [·]ij denotes the block corresponding to cell ci 

and robot position pj . 

The k-hop version of T V D−D1  thus becomes 

TVD-Dk: 

 k  
∂c

_ 
∂c 

  

p˙ = 

  

−κ(p − c) +
(IV.2
) 

 

    

. 

 

_= 
0 

∂p ∂t  

        
 

 

V. IMPLEMENTATION  
 
A. Experimental Results  
 

In the previous section, a family of distributed 

algorithms T V D-Dk , k = 0, 1, . . ., were developed as 

approximations to T V D-C, which, in turn, was 
presented as an alternative tothe two algorithms 

dubbed Lloyd ((II.7)) and C ortes ((III.1)). In this 
section, we implement these different algorithms on 
a team of mobile robots, both in simulation and on 
Khepera III differential-drive mobile robots.  

Two different density functions were considered 

φ1(q, t) = e−
 

(qx−2 

sin ( 

t 

))
2+ ( 

q 
y 

)
2
   

 

τ 4  

φ2(q, t) = e− 

(qx−2 c 

o s( 

t ))2+ (qy−2 

sin ( 

t 

))
2

.

 

τ τ  
 
The choice of density function is arbitrary, but these 
were se-lected for their difference in spatial 
symmetry and translational velocities. The “time 

constant” τ was taken to be τ= 5, and as a sanity-
check, a number of simulations were performed 

using T V D-D1from different initial conditions. 

Moreover, different versions of T V D-Dk , were 

simulated for φ1 and φ2 with the total cost being 

T f 

H (p(t), t)dt. 
0  

The costs are summarized in Table I, and as can be 

seen, the cost does indeed decrease slightly as more 

terms are kept in 
 

2
Formally speaking, dist(i, j) is the edge distance, 

or number of edges in the shortest path, between i 
and j in the Delaunay graph induced by the Voronoi 
tessellation. 
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IEEE TRANSACTIONS ON 

ROBOTICS, VOL. 31, NO. 2, APRIL 

2015 
 
 

TABLE I 
TOTAL COSTS UNDER DIFFERENT 
T V D -Dk 

 

Algorit
hm 

Total cost 

for φ1 

Total cost 

for φ2 

   

T V D -D 
0 316.7 37.3 
T V D -D 
1 309.8 35.9 
T V D -D 
2 308.2 35.8 
T V D -D 
4 307.1 35.8 
T V D -D 
1 0 306.5 35.8 
T V D -C 306.4 35.8 
       

TABLE II 

COVERAGE PERFORMANCE 
COMPARISON 

 

 φ 1 φ 2 φ 3 φ 4 φ 5 

      

T V D -D 
1 309.8 35.0 36.5 35.9 

100
.2 

T V D -C 306.4 34.3 34.3 33.7 
98.
9 

C o r t e s 319.5 38.4 N/A 37.5 
101
.7 

L l o y d 324.6 40.1 52.6 38.7 
103
.6 

            
 
the Neumann series. However, the difference 
between the dif-ferent cases is not particularly 

dramatic beyond k= 0 to k= 1 case, i.e., when no 
information is used about neighboring robot 
positions and when only adjacent neighbors are 
taken into ac-count. Similarly, the price of anarchy, 

i.e., the difference between T V D-D1and T V D-C is 
marginal.  

Moreover, a comparison was made to Lloyd and to 

C ortes, using φ1 and φ2 , as well as three additional 

time-varying density functions—one of which (φ5 ) 
was generated using human in-puts, as discussed 
subsequently. In all of these cases, the robots were 
initialized to the same positions to mitigate an 
inherently problematic comparison, since these 
algorithms are chasing lo-cal (as opposed to global) 
minimizers to the locational cost. The performance 
metric used was the total locational cost, the same 
as in Table I. These findings are summarized in 
Table II.  

In all cases (except φ3 ) C ortes did indeed perform 

better than Lloyd, which is not surprising since Lloyd 
is designed for static density functions. However, 

under density function φ3 , the assumptions behind 

C ortes were violated. Moreover, T V D-C and T V D-D1 

both outperformed C ortes and Lloyd in all five cases. 

In all of those cases, T V D-C performed best, as can 

be expected. Among the decentralized algorithms, T 

V D-D1 was the overall most effective algorithm 
since it is always well posed, allows for a 
distributed implementation, and performs better 
than the previously proposed algorithms.  

T V D-D1was implemented on a team of mobile 

robots. TheROS (robot operating system, version 
Diamondback) frame-work running on Ubuntu 
(version 11.04) machine with Intel dual core CPU 
2.13 GHz, 4 GB memory was used to imple-ment 
the algorithm and send control signals to individual 
robots over a wireless router. Five Khepera III 
robots from K-team were used as the team of 
mobile robots for the experiment. The Khepera III 
robots each have a 600 MHz ARM processor with 
128 Mb RAM, embedded Linux, differential drive 
wheels, and a wireless card for communication over 
a wireless router. Ten OptiTrack S250e motion 
capture cameras were used to provide position and 
orientation data for the robots, which were used to 
provide the information required for the algorithm 
and the computation of the Voronoi partitions. 



                                                                                                ISSN 2394-3777 (Print) 

                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

                               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 

                               Vol. 3, Special Issue 13, March 2016 

65 

All Rights Reserved © 2016 IJARTET 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. T V D -D1 is deployed on a team of five mobile robots for density φ1 . An overhead projector is 
visualizing pertinent information: the thick lines delineate the Voronoi cells, whose centroids are shown as 
the bright dots. The arrows show each robot’s desired direction of motion. (See 
http://youtu.be/fu5LrlBcu9Y.) 
 

As the Khepera III mobile robots are differential-

drive robots, they can be modeled as unicycles 

˙ 

x˙i= vicos θi ,   y˙i= visin θi ,   θi= ωi  
where (xi, yi) is the position of robot i, θi its heading, 

and vi, ωiare the translational and angular velocities. 
In contrastwith this, the coverage algorithm 

provides desired motions in terms of p˙i and we map 

these onto vi , ωi through vi=_p˙i_ and ω = [−sin θi , cos 

θi]p˙i / _p˙i_. The result is shown in Fig. 1. 
 
B.  Human Generated Density Functions: 
 

Although achieving coverage over time-varying 

density func-tions is useful in its own right, our 

motivation stems from human-operated teams of 

mobile robots. The idea is that the density functions 

serve as input modalities to the system, and that a 

human operator should be able to manipulate these 

densities.  
The way densities were generated was by 

utilizing a touch-sensing input device (a tablet), 
whereby the user can provide the desired 

configuration by drawing the regions of interest 
over the domain. To reduce the amount of 
information required to describe the drawn density, 
while maintaining a continu-ously differentiable 

density φ, the density can be approximated with 

parametric densities. We opted for a Gaussian 
mixture model (GMM) to approximate the density 
for the purpose of proof-of-concept. The GMM 
density was made time-varying by translating the 
mean value of every centroid in the GMM by a 
human-generated continuous function, which 
“dragged” the density around. 
 

VI.  CONCLUSION AND FUTURE 

DIRECTIONS 
 

This paper presents a novel coverage algorithm 

that can han-dle time-varying density functions, as 

well as lend itself to a distributed implementation, 

and experimental results demon-strate the viability 

of the proposed approach. The main idea is to 

combine a proportional term driving the robots to 

the centroid of their Voronoi cells with a controller 

tracking the time-varying evolution.  
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It should be noted, however, that in 

practice, input saturations, modeling errors 

associated with the single integrator dynamics, and 

aggressively varying density functions make the 

robots temporarily deviate from their centroids on 

occasions. This fact seems to indicate that this 

paper should be thought of as a first step toward 

handling time-varying density functions and that 

 
more robust and responsive methods can be 

developed as future endeavors. The generation of 

effective density functions from human inputs is 

another issue that will be pursued in the future, as 

well as the introduction of obstacles and nonconvex 

areas of interest. 
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