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Abstract –In this paper, Traditional beamforming 

and power control algorithms in cognitive radio (CR) 

are based on the assumption of perfect channel state 

information (CSI) however; this may lead to 

performance degradation in realistic systems. In this 

paper, the problem of joint beamforming and power 

control is investigated in underlay CR networks with 

imperfect CSI. Our objective is to maximize the sum 

utility of secondary users (SUs) under the primary 

users (PUs) interference power constraints and the 

transmission power constraint of SUs. First, the joint 

beamforming and power control problem is 

formulated under game theory framework, where the 

SUs compete with each other over the beamforming 

vectors and transmission power level made available 

by the PUs. Moreover, the channel uncertainty is 

described using ellipsoid sets and the interference 

power constraints can be converted into robust 

interference power constraints. Besides, Nash 

equilibrium (NE) is considered as the solution of this 

game. Finally, simulation results show that the 

proposed scheme can converge to a locally optimal 

pair of beamforming vector and transmission power 

level in the presence of channel uncertainty.... 
 

 

      Keywords – Cognitive radio, Beamforming, 
power allocation, imperfect channel state information, 
Nash equilibrium. 

 
             1.  INTRODUCTION.  

 

 Cognitive radio (CR), as a promising 

technology to                                    enhancing the 

utilization efficiency of the scarce radio spectrum, has 

attracted tremendous interests recently it has to access 

the opportunistic idle licensed spectrum without 

interference to PU. A key feature of the CR network is 

to allow a secondary user (SU) to simultaneously share a 

licensed spectrum as long as the secondary transmission 

does not interfere with the primary link. As a result, the 

challenge of the CR network is to protect the primary 

users (PUs) from harmful interference induced by the 

SUs as well as to meet the quality of service (QoS) 

demands of SUs [1].Cognitive beamforming and power 

control, as an effective interference suppression 

technology, has been widely used in CR from different 

aspects [2-4]. All these work are based on the 

assumption of perfect channel knowledge. However, in 

practical systems, perfect CSI is difficult to obtain due to 

the loose cooperation between PUs and SUs, as well as 

many other factors such as inaccurate channel 

estimation, limited feedback or lack of channel 

reciprocity. The worst-case approach has been used to 

design robust power for SUs in a multiple-input single-

output (MISO) CR system [5, 6]. In [5], the software 

assisted method and a geometric method were 

considered for single SU and single PU to find 

suboptimal solution for the certainty and uncertainty 

models. A bounded region for channel matrices and 

channel covariance matrices was assumed to be known 

in [6]. The authors used a type of ellipsoid uncertainty 

problem to express the bound channel uncertainty. 
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Figure 1. Cognitive Radio System Model. Solid line Denotes 
Transmission Channel and Dotted line Denotes Interference Channel 

 

           For more SUs or PUs, [7] made some 

approximations for the uncertainty channel model between 

SUs and PUs. In [8], the worst-case of uncertainty was 

considered and the initially non-convex uncertainty 

problems are transformed into a second order cone 

programming (SOCP) or other convex problems, which can 

be solved by software.. The proposed scheme, with the 

consideration of both cooperative feedback from PUs and 

local feedback from SUs to the secondary base station 

(SBS), is robust to the channel uncertainties. Robust 

distributed power allocation algorithm for underlay CR 

networks was proposed in [10], which maximizes the sum 

utility of SUs when channel gains from SUs to primary 

base station (PBS) and interference introduced by PUs to 

the SBS are uncertain. In [11], the authors studied the 

problem of joint beamforming and power allocation in a 

cognitive MIMO system using game theory, where the 

imperfect CSI was taken into account by the robust 

interference constraint and the optimization problem in the 

formulated robust game is converted into a SOCP problem. 

 
 

Inspired by the aforementioned work, in this paper, we 

consider the problem of joint beamforming and power control 

for underlay CR via game theory under imperfect CSI, where 

multiple SUs coexisting with multiple PUs. The objective is to 

maximize the sum utility of SUs under the interference power 

constraints at PUs, the total transmission power constraint of 

SUs, and SINR constraint of each SU. The joint problem is 

formulated as non-cooperative game, and then an ellipsoid 

model is adopted to describe the CSI uncertainty. By taking 

some approximation, the problem is reformulated as a SOCP 

problem. Simulation results show that the effectiveness of our 

proposed scheme. 
 
 

         The reminder of this paper is organized as follows. In 

section II, the system mode of CR is introduced and the 

optimization problem under imperfect CSI is formulated. In 

section III, the problem of joint beamforming and power 

control is formulated as non-cooperative game, and then the 
problem is transformed into a SOCP problem. In Section IV, 

numerical results are shown for our scheme. Finally, Section V 
draws some concluding remarks.                         

2.     RELATED WORK 

            1.  Introduction 

   Literature survey is carried out by analyzing many papers      

relevant to unreachability problem like hidden/exposed  terminal 

problems ,packet dropping and distance based approach to reduce 

energy consumption of nodes cognitive radio networks. The 

researches carried out by different authors are surveyed and the 

analysis done by the researchers are discussed in the following 

paragraphs.  

 

      2. System Model and Problem Formulation 
 

 As illustrated in Fig. 1, we consider a cognitive network      
where a primary network consisting of a PBS and M Pus coexists 
with a secondary network with a SBS and K SUs. In the 
secondary network, SUs operate in the frequency band allocated 
to the PUs, thus the channels between the base stations and users 
are inherently interference channels. 

3. Game under Imperfect CSI 
 

Under the assumption of imperfect CSI between the SBS and  

PUs, in order to enable the SUs to share the spectrum with 
PUs, we should find appropriate power level and beamforming 

vectors to distribute them among the SUs so that the sum utility 

of SUs is maximized and the interference created to PUs is as low 
as possible. In this section, the problem of joint beamforming and 

power allocation under imperfect CSI will be described from the 

perspective of game theory. 

 

4.Game-theoretic Formulation 
 

Game theory is an effective tool to deal with the strategy 
choice and balancing among individuals who are of conflict 
interests. The players in a game with conflict interests will 
selfishly choose their own strategies to maximize their utility 
functions. In CR network,SUs share the spectrum bands of PUs in 
a competitive way, which will inevitably interfere with each other 
[12]. Therefore, the problem of joint beam- forming and power 
allocation is viewed as a non-cooperative game. Based on the 
system model described earlier, the non- cooperative game can be 
formulated as 

 

and it has the following three major components. 
 

1) Players: In this paper, players are SUs. A finite set of 

sensor nodes is denoted as   

N  = {1,2,  ,K}.  
 

2) Strategic Space: The strategic space is defined by the 

beamforming strategies fi  and power strategies   pi    of  

SUs.  The  joint  strategy  spaces  are  defined  as 
 

θ = f1 × f2 ×  × f K  and P = p1 × p2 ×  × pK .  
 

G = [N,{ fi , pi }i∈N ,{ui(⋅)}i∈N (!) 
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3) Utility Function: In this paper, ui  is the corresponding 

utility function of SUi .  
 

A utility function of a player will assign numbers for every 
possible outcome in the game. In general, a higher number 
normally implies a more preferred outcome. The 
utilityfunction can be designed based on the achievable rate. 

 

     5. Second Order Cone Programming Solution 
 

In this subsection, the optimization problem (9) is solved 

via a SOCP solution. As is known to all, the zero-forcing (ZF) 

scheme is a simple and efficient beamforming method which 

maximizes the sum utility by choosing appropriate fk [14]. 

Here, we adopt the ZF beamforming that transforms the 

broadcast channel into multi-parallel independent and orthog-

onal sub-channels. The beamforming vectors are selected to 

satisfy hk fi = 0,i ≠ k . Suppose that F = [f1,f2 , ,fK ] 

denotes the beamforming matrix, one easy way to choose the 

beamforming matrix F that gives the zero interference . 

          3.  OVERVIEW OF BEAMFORMING  

                    The evolution of multiple antenna systems has led to 

some important signal processing techniques such as 

beamforming  [16] to substantially improve the performance of 

the wireless system.   Beamforming exploits the benefits of 

antenna arrays for directional transmission or reception of a 

signal, which can be implemented at both receiver and 

transmitter.  Specifically, interference reduction and SINR 

maximization are some of the key benefits that can be achieved 

with beamforming [46].  In literature, we can find two main 

categories of beamforming techniques [47]. They are called 

fixed beamforming and adaptive beamforming.  

         1. Fixed beamforming  

            Fixed beamforming uses a predefined set of beamforming 

weights and time-delays for each antenna at the transmitter or 

receiver.  The beamforming weights and time-delays are 

basically calculated while exploiting the location and direction 

of the desired user. However, there is no correlation between the 

beamforming weights and the received signal in fixed 

beamforming.  Hence, it can be identified as a multiple fixed 

beam switching technique.  

        2. Adaptive beamforming  

        Unlike fixed beamforming, adaptive beamforming technique  

dynamically computes the beamforming weights based on the 

properties (i.e., phase, amplitude fading) of the received signal. 

In other words, this technique tries to determine the optimal 

beamforming weights in such a way that they increase the 

quality of the desired received signal and minimize the 

interference to the other users. For instance, the least mean 

square algorithm [1], recursive least square algorithm [48] and 

sample matrix inversion [49] are some of the commonly used 

adaptive beamforming algorithms in literature. 

        3.Beamforming in Cognitive Radio Networks  

               We already mentioned that there are three dynamic 

spectrum access models, which are available to the SUs to 

initiate their communications.  However, each dynamic 

spectrum access model introduces some amount of interference 

to the PU. Hence, the interference to the PU is inevitable in 

CRNs and sometimes it can be unintentional. Basically, 

interweave and overlay dynamic spectrum access models try to 

minimize the effect up to some extent by employing spectrum 

sensing and PU-association, respectively.  In these kind of 

situations, SU’s resources such as time and power are wasted 

and hence performance degradation in throughput is also 

possible. Inaddition to that, co-channel interference in wireless 

networks is another drawback due to the reusing of spectrum 

among the SUs. 

                    In order to overcome those challenges, beamforming 

technique with multiple antenna system was introduced in 

CRNs [17]. For example, in hierarchical cellular network, using 

multiple antennas, SBS performs transmit beamforming to send 

multiple beams towards different SUs, which are located at 

various geographical locations. In such way, the energy of the 

transmitted signals is more concentrated at the intended 

receivers.  As a result interference to the PU and other co-

channel SUs are reduced. Furthermore, cooperative 

beamforming [50] is another type of beamforming method 

where  a  particular  SU  transmitter (i.e.,  source)  uses  some  

SU-relay  nodes  to  send information to a particular SU receiver  

(i.e.,  destination).   In this case,  all users are equipped with 

single antenna transceivers.  However, the SU-relay nodes act as 

a virtual array of antennas to focus the signal towards the 

intended SU-destination. Thus, it shows that even without 

implementation of multiple antennas at each SU, beamforming 

can be used to mitigate the interference and increase the 

received signal strength.   However, association of the SUs 

could introduce significant complexity for beamforming in such 

system configu Related Works on Beamforming and 

Resources Allocation in CRNs. 

                 In this section, we present a general survey about 

beamforming and resource allocation in CRNs.  Specifically, in 

this survey, we consider resource allocation in CRNs with three 
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different areas in terms of beamforming strategies, number of 

PU channels and network architectures.  

1) Beamforming in single PU channel CRNs: In cognitive 

systems, resource allocation problems, i.e., power and 

channel allocation, have been widely deployed to increase 

the achievable sum-rate of the secondary network with 

simultaneously minimizing interference to the primary 

network. The authors in [51] considered a joint power and 

channel allocation problem to maximize the sum-rate of a 

secondary network with guaranteed protection to primary 

users.  However, the work in [51] tried to control the 

transmit power of the SUs in order to reduce the 

interference to the PUs.  Different from conventional power 

control, in [17] beamforming has been successfully adopted 

in CRNs to enhance SINR at each secondary user receiver 

(SU-RX) by exploiting the advantages of multiple antenna 

systems. In literature, joint beamforming and resources 

allocation have been widely studied for multiple-antenna 

CRNs. Xie et al. in [18] considered a sum-rate 

maximization problem with beamforming in a single PU 

channel CRN. In this work, the mutual interference 

between the SUs are nullified by deploying zero-forcing 

beamforming (ZFBF). ZFBF avoids the potential 

interference tolerance capabilities at SUs, the overall 

achievable sum-rate of the secondary network is degraded.  

The authors in [19, 20] explained that each SU or PU 

receiver is capable of tolerating some amount of 

interference, and they further proposed that underlay 

communication allows SUs to co-exist with PUs as long as 

the interference to the PU-RX is below the predefined 

threshold. 

2)   Therefore, it is not necessary to null the interference all 

the time. For example, Jiang et al. in [22] employed a zero-

gradient based iterative approach to determine the local 

optimal beamforming vectors while maximizing the energy 

efficiency of the CRN. In [23], beamforming vectors were 

calculated by using an iterative algorithm based on 

semidefinite programming to maximize the sum-rate with a 

total power constraint and co-channel interference 

constraints at both PU and SU receivers. This work was 

further extended in [24] by adding an extra quality of 

service (QoS) constraint.  However, the authors in [22-24] 

only considered a single PU channel CRNs with their 

problem formulations.  As a result, it reduces the degree of 

freedom available at the SBS on channel allocation for SUs. 

Therefore, joint beamforming and resource allocation with 

multiple PU channels were considered.  

3) Beamforming in multiple PU channels CRNs:  In fact, 

primary user network is not only confined to a single 

channel.  It can employ multiple PU channels to achieve 

heterogeneous SINR targets at each receiver.  Thus, 

availability of multiple PU channels in secondary network 

increases the selectivity on channel allocation, while 

beamforming helps to further reduce the unwanted 

obstructions to the PUs.  Obviously, multiple PU channels 

access enhances the performance in terms of sum-rate over 

the single channel CRNs. In [17], a single secondary user 

transmitter (SU-TX)/SU-RX pair was considered with 

uniformly distributed primary user transmitters (PU-TXs) 

and PU-RXs in a circular disc area. Beamforming was 

implemented by the SU-TX to minimize the interference to 

the PU-RXs while the received signal strength was 

maximized at the SU-RX. The authors in [53] considered 

two beamforming and resource allocation optimization 

problems, i.e., sum-rate maximization and SINR balancing, 

in CRNs under the peak power constraints and interference 

constraints for SUs and PUs, respectively.  Authors in [54] 

presented a framework to minimize the total transmit power 

of a secondary network subject to some 

        4.  NETWORK ARCHITECTURES IN CRNS:  

              In literature,  we can find different network architectures, 

which have been proposed for the secondary network.   In fact, 

we can mainly classified them into two categories, i.e.,  

infrastructure-based CR networks and cognitive radio ad-hoc 

networks (CRAHNs) [34]. The former consists of a central 

network entity, which is called as the SBS or access point (AP). 

A cellular network CRN is a common example for the 

infrastructure-based CR network.  On the other hand, the later, 

i.e., CRAHN, does not have a central unit. Instead, SUs in those 

networks communicate with each other using the ah-hoc 

connections. Some works in this area include an adaptive 

intercell interference cancellation (ICIC) technique for MISO 

downlink cellular system with channel allocation and 

beamforming to maximize the weighted sum-rate [58]. Hamdi et 

al. in [59] considered joint beamforming with near-orthogonal 

user selection method to maximize the downlink throughput of a 

cellular CRN while subjecting to SINR constraint at each SU, 

interference constraint at the PU-RX and total power constraint. 

Authors in [60] presented a joint beamforming with PUs and 

SUs selection problem to maximize the sum-rate of the entire 

cellular networks (i.e., both primary and secondary network). In 

addition, the authors in [22-24] also studied resource allocation 

and beamforming under the cellular architecture.  In [61] the 

authors discussed a weighted sum-rate maximization problem 

for ah-hoc networks constrained with per-node (i.e., each SU-

TX) transmit power and PU interference. Furthermore, a 

resource control optimization problem with interference and 

delay requirements was formulated in  [62] with beamforming 

in an ad-hoc CRN. Different from the traditional architecture, 

device-to-device (D2D) communication based secondary 

networks offer many benefits.  Improved spectral efficiency, 
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greater coverage with spatial diversity, higher data rates, lower 

energy consumption and delay are some of the potential 

advantages due to the direct and short distance communication 

used in D2D networks. In [63], the authors considered a power 

allocation problem for CRNs with D2D communications to 

maximize the data rates of both PU and SU networks without 

evaluating the effect of interference and beamforming.  In [64], 

joint beamforming and power controlling were studied to 

minimize the sum power of the primary and D2D networks by 

subjecting to minimum rate targets both at each PU-RX and SU-

RX. Different from all the existing works, in this thesis, we 

exploit a joint beamforming, channel and power allocation 

optimization problem for multi-user multi-channel MISO 

CRNs.  Instead of performing beamforming at a single SBS, we 

consider beamforming at each SU-TX to mitigate interference 

and support more transmission opportunities with other benefits.   

A.  A two-stage solution approach 

  The problem P1 consists of continuous and discrete 

variables, and there are nonlinear terms in both objective 

function and constraints.  It is a non-convex, mixed integer 

non-linear  programming problem, which has been proved 

to be NP-hard as in [23]. In order to balance performance 

and computational complexity, in the following a two-stage 

solution approach is proposed. The idea is to separate the 

main problem into two sub-problems. In the first sub-

problem, the power and beamforming vectors are calculated 

based on a given channel allocation.  After that, the second 

sub-problem, which determines an optimal channel 

allocation, will be solved. For the second sub-problem, two 

algorithms are proposed with different computational 

complexity. 

4.1.1 Power and beamforming vector determination 

based on a given channel allocation .In this section, the 

beamforming vector and power allocation for each SU-TX 

will be determined given a channel allocation, X˜ . Given 

X˜ , constraints(3.11) and (3.13) can be transformed to a 

summation of quadratic terms and norms so that they 

become convex. However, the problem is still non-convex 

because neither the objective function (3.10) nor the 

constraint (3.12) are convex similar to analysis in [23] and 

[24], respectively.  To overcome this issue, we use 

semidefinite programming (SDP) approach [66], which 

allows to express the quadratic terms with some equivalent 

affine expressions.  With SDP, the quadratic terms,  

.  Following the similar method in [23], we introduce the 

following iterative algorithm for P3.  

(i) Initialization:  Relax the intra-user interference 

constraint  (4.13)  by assigning a feasible non-

negative large value for ϕ.  Then, solve the problem P3 to 

find outa feasible value of W, called each user as ϕk0) =  

∑W(0) . Set the intra-user interference thresholds for Tr(W˜ 

m0)Hmk ), ∀k ∈  S  and calculate the sum-rate, m∈Sn m=k 

R(W˜ (0) , ϕ(0) ), based on (4.11).  Define SU pair index, k  

=  1,  1  ≤ k  ≤ K and the iteration index, a = 1.  

(ii) Update: Update ϕ(a) by ϕ(a)  = ϕ(a−1) − (1 − 

δ)ϕka−1)Ik where δ is a fixed step size, 0 < δ < 1, and Ik is 

the kth column of an K × K identity (iii) Iteration results: 

Calculate the new value for R(W˜ (a) , ϕ(a) ) using W(a) 

. 

(iv) Check improvements:  Calculate ∆R  =  R(W˜ (a) , 

ϕ(a) ) − R(W˜ (a−1) , ϕ(a−1) ). The non-negativity of ∆R 

can be proved as in [24].  If ∆R is greater than a predefined 

threshold, let a = a+1 and repeat steps (ii) and (iii) till it is 

below a predefined threshold. After that, set W(a)  = W˜ 

(a−1) , R(W˜ (a) , ϕ(a) ) = R(W˜ (a−1) , ϕ(a−1) ) and update 

the intra-user interference for each user as ϕka)  = ∑Tr(W˜ 

ma)Hmk ),  ∀k ∈ S . m∈Sn m=k  

(v) Continue iterations and pick the next user: Set k = k 

+ 1 and continue steps (ii) - (iv)for the newly selected user.  

(vi) Termination: If k > K , stop the iterations. matrix.  

At each iteration, the problem P3 needs to be solved given a 

channel allocation and ϕ. Since most of the convex 

optimization toolboxes (e.g., CVX) use the interior-point 

algorithm [69] as a basic solution platform, considering the 

worst-case scenario as in [67], the computational 

complexity of a SDR problem P3 can be expressed as 

O(max{ξ , κ}4 κ(1/2)log(1/ϵ)) (4.14)where κ and ξ 

describe the problem size (i.e., number of PSD matrices) 

and the number of constraints involved in the optimization 

problem P3, respectively. ϵ is the given accuracy of the 

solution defined by the solver. Let tT  denotes the total 

number of iterations taken by the iterative algorithm to 

produce a feasible solution for total K SU pairs. Then, the 

overall complexity to find beamforming and power vectors 

for a given channel allocation can be derived as  

O(max{ξ , κ}4 κ(1/2)log(1/ϵ)) × tT (4.15) Let W˜  = [W˜ 

1 . . . W˜ K ] and ϕ˜ = [ϕ˜1 , . . . ,ϕ˜K ]T  be the feasible 

solutions of the problem P3.  Then, W is optimal if and 

only if the rank of each Wk , ∀k  ∈ S , is equal to one, i.e., 

rank(Wk ) = 1. If such condition is not satisfied, appropriate 

rank one approximation methods, e.g., eigen-decomposition 

method [67], can be deployed to get the final solution of
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 W.  By using eigen-decomposition method, each 

beamforming matrix Wk  can beequivalently represented as  

∑ Wk = λkjckjckj j =1  

where λkj  and ckj  denote the jth eigenvalue and the 

corresponding eigenvector of the kth beamforming matrix 

Wk , respectively. If Wk is a rank one matrix, then there 

exists exactly one non-zero eigenvalue, say λkJ .   

B.  Finding the optimal channel allocation 

In the previous section, we have determined the optimal 

power and beamforming vectors for a known channel 

allocation.   In order to find the optimal channel allocation,  

an exhaustive searching algorithm can be used, which needs 

to compute beamforming vectors, power allocations and 

sum-rates for all possible channel allocations. With N PU 

channels and K SU pairs, the searching space size of the 

exhaustive searching algorithm is (N + 1)K , which 

increases exponentially with K .  Obviously, this searching 

method is practically infeasible. Hence, for practical 

applications, we propose a channel allocation algorithm 

based on discrete stochastic algorithm to find optimal 

channel allocations. 

 Algorithm : Discrete Stochastic Approximation  

          In order to determine the beamforming vector and channel 

allocation for each SU-TX, we considered the perfect knowledge 

of the channel state information (CSI) at secondary base station 

(SBS). Hence, problem formulation with imperfect CSI is one of 

the possible extensions to this work. We can use the training 

sequence channel estimate method [76] to find CSI at the 

beginning of each time slot. In addition to that, we can use discrete 

stochastic approximation (DSA)-based channel allocation method 

[77] to find out the suboptimal channel allocation. Errors in the 

estimates of the CSI is inevitable due to some sensing limitations. 

Let Φ as in section (4.1.2).  Hence, each Xl  ∈ Φ indicates a 

certain feasible channel allocation in the CRN. Therefore, the 

corresponding channel gain matrix for Xl is defined as C [Xl ], l = 

1, . . . , L = (N + 1)K . In general, the optimization problem is 

expressed as in (4.21). However, due to the estimation errors, the 

estimated channel gains matrix at the tth time slot, denoted as C [t, 

Xl ], may produce a noisy estimate of R(Xl ), which is defined as 

r(Cˆ[t, Xl ]).  Infact, for different iteration times, the value of 

r(Cˆ[t, Xl ]) becomes random. Hence, if we assume those 

estimates are unbiased, then we can have a sequence of 

independent and identically distributed random variables 

corresponding to each iteration time t. Therefore, the suboptimal 

channel allocation problem can be approximated by DSA as  

                     X⋆⋆⋆⋆  = arg max E {r(Cˆ[t, Xl ])} (5.1) 

At the beginning of the algorithm, we set the iteration index, t to 

be one.  Then, a channel allocation is randomly selected from Φ, 

which is denoted as X(1) .  Furthermore, a state probability is 

assigned to each channel allocation in Φ including X(1) .  Define 

the  set  of  probabilities  for  all  channel allocations  at  the  tth  

iteration  to  be  π[t]=∑π[t, 1], π[t, 2], . . . , π[t, L], where  

l π[t, l] =  1. At t  =  1, we set π[t, X(1) ]  =  1 andπ[t, X] =  0, 

∀X  =  X(1) .  In addition, L × 1 auxiliary vector, el , is defined 

with all elements equal to zero except the lth element, which has a 

value equals to one. For notation simplicity, the value of el at the 

tth iteration is mapped to a L × 1 column matrix D[t]. Next, at 

each iteration a new channel allocation,X˜ , is randomly selected 

from the set Φ. Afterward, we compute the corresponding sum-

rates for the two selected channel allocation (i.e., r(Cˆ[1, X(1) ]) 

and r(Cˆ[1,X˜ (1) ]).  Two sum-rates are then compared to 

determine the better channel allocation.  Finally, the state 

probabilities of each channel allocation is updated using π[t + 1]  =  

π[t] + ϵ[t](D[t + 1] − π[t]) with a step size of ϵ[t]  =  1/t. The 

implementation of the DSA algorithm is summarized as in 

Algorithm. 

   

1:Initialization: Given K, N , Φ 

2:Set t = 1, 

3:Randomly select a channel allocation from Φ ← X
(1) 

4:Set π[1, X
(1)

 ] ← 1, π[1, Xl ] ← 0, ∀Xl  = X
(1)

 , Xl  ∈ Φ 

and D[1] ← el 

5:for t = 1, 2, . . . do 

6:Randomly select a new channel allocation from Φ ← X˜
  

(t)
 , ∀X˜

 (t)
  = X

(t) 

7:[T ] ← {X
(t)

 ,X˜
 (t)

 } 

8:Compute two rates, r(Cˆ[t, X
(t)

 ]), r(Cˆ[t,X˜
 (t)

 ]) 

9:if {r(Cˆ[t, X
(t)

 ]) ≤ r(Cˆ[t,X˜
 (t)

 ])} then 

10:X
(t+1)

  ← X˜
 (t)

 

11:else 

12:X
(t+1)

  ← X
(t) 

13:end if 

14:D[t + 1] ← eindex 

15:π[t + 1] = π[t] + ϵ[t](D[t + 1] − π[t]), where ϵ[t] = 1/t 

16:if π[t + 1, X
(t+1)

 ] > π[t + 1, X⋆ ] then 

17:X⋆  ← X
(t+1) 

18:else 

19:X⋆  ← X
(t) 
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20:end if 

21:t ← t + 1 

22:end for 

23:Output: X⋆ , W⋆ 

 

5. SIMULATION RESULTS 

        In this section, the performance of both BPCA-GA and 

BPCA-SA algorithms are evaluated using computer simulations. 

Simulation environment  

 
Consider a CRN with three PU-TX/PU-RX pairs (i.e., N  =3). 

The locations of the PU-TXs are given by the x-y plane 

coordinates (300, 0), (−4000) and (0, −100), and their associated 

PU-RXs are situated at (600, 0), (−400, 300) and (0, −400), 

respectively, where all the distances are measured in meters. 

There are six SU-TX/SU-RX pairs (i.e., K = 6) randomly 

located within a square area of 600m × 600m. For each SU-TX, 

its associated SU-RX is randomly located in a circle centered at 

the SU-TX with a radius of 100m 

 

 

 

 

 

 

             6. CONCLUSION 
 

       In this paper, the problem of joint beamforming and 

power control in underlay CR with multiple PUs and 

multiple SUs was studied. Imperfect CSI between the SBS 

and PUs was considered. The problem was formulated as 

non-cooperative game, and then an ellipsoid model was 

adopted to describe the CSI uncertainty. After making some 

approximations, the problem was reformulated as a SOCP 

problem. Simulation results shown that the proposed 

scheme converges to an equilibrium state. And the sum 

utilities of SUs were also presented to illustrate the 

performance of the secondary network under perfect and 

imperfect CSI. Furthermore, we assumed that each SU-

TX/SU-RX pair is only allowed to utilize at most one PU 

channel at a time.  However, we may allow each SU-TX to 

use more than one channel to communicate with a single 

SU-RX. Hence, this could help to significantly improve the 

performance of the secondary network in term of 

achievable throughput while simultaneously satisfying the 

quality-of-service (QoS) requirement of each user. In 

addition, we can improve the spectrum utilization of both 

primary and secondary networks with greater extend. 
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