
ISSN2394-3777 (Print)  
ISSN2394-3785 (Online)  

                                                                                                                Available online at www.ijartet.com  
 
 
                 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)  
                Vol. 5, Special Issue 9, March 2018 �

���������	��
	
��
�������������������������������� ����������������������������������������
�

PREVENTION OF ZOMBIES ATTACKS IN 
DISTRIBUTED NETWORKS USING 

DYNAMIC PATH IDENTIFIER 
A. George Arokiaraj1,  
Assistant Professor/IT 

Idhaya Engineering College for Women, 
Chinnasalem 

 

Sr. Maria Anand Milani. S 2 

Assistant Professor/IT 
 Idhaya Engineering College for Women, 

Chinnasalem 

 

ABSTRACT: 

The PIDs used in existing approaches are 
static, which makes it easy for attackers to launch 
distributed denial-of service (DDoS) flooding attacks. 
To address this issue, in this paper, we present the 
design, implementation, and evaluation of D-PID, a 
framework that uses PIDs negotiated between 
neighboring domains as inter-domain routing 
objects. In DPID, the PID of an inter-domain path 
connecting two domains is kept secret and changes 
dynamically. We describe in detail how neighboring 
domains negotiate PIDs, how to maintain ongoing 
communications when PIDs change. 

 
Keywords: Inter-domain routing, security, 
distributed denial-of-service (DDoS) attacks, path 
identifiers. 
 
                    I.INTRODUCTION 
 

Denial-of-service (DDoS) flooding attacks are 
very harmful to the Internet. In a DDoS attack, the 
attacker uses widely distributed zombies to send a large 
amount of traffic to the target system, thus preventing 
legitimate users from accessing to network resources. 
Many approaches have been proposed in order to 
prevent DDoS flooding attacks, including network 
ingress filtering, IP trace back, capability-based designs, 
and shut-up messages. 

At the same time, in recent years there are 
increasing interests in using path identifiers PIDs that 
identify paths between network entities as inter-domain 
routing objects, since doing this not only helps 
addressing the routing scalability and multi-path routing 
issues, but also can facilitate the innovation and adoption 
of different routing architectures. Luo et al proposed an 
information-centric internet architecture called CoLoR 
that also uses PIDs as inter-domain routing objects in 
order t o enable the innovation and adoption of new 
routing architectures. 

 There are two different use cases of PIDs in the 
aforementioned approaches. In the first case, the PIDs 
are globally advertised. As a result, an end user knows 
the PID(s) toward any node in the network. 
Accordingly, attackers can launch DDoS flooding 
attacks as they do in the current Internet. In the second 
case, conversely, PIDs are only known by the network 
and are secret to end users. In the latter case, the network 
adopts an information-centric approach where an end 
user (i.e., a content provider) knows the PID(s) toward a 
destination (i.e., a content consumer) only when the 
destination sends a content request message to the end 
user. After knowing the PID(s), the end user sends 
packets of the content to the destination by 
encapsulating the PID(s) into the packet headers. 
Routers in the network then forward the packets to the 
destination based on the PIDs. It seems that keeping 
PIDs secret to end users makes it difficult for attackers 
to launch DDoS flooding attacks since they do not know 
the PIDs in the network. However, keeping PIDs secret 
to end users is not enough for preventing DDoS flooding 
attacks if PIDs are static. For example, Antikainen et al 
argued that an adversary can construct novel zFilters 
(i.e., PIDs) based on existing ones and even obtain the 
link identifiers through reverse-engineering, thus 
launching DDoS flooding attacks .attacks by learning 
PIDs if they are static. 

To address this issue, in this paper, we present 
the design, implementation and evaluation of a dynamic 
PID (D-PID) mechanism. In D-PID, two adjacent 
domains periodically update the PIDs between them and 
install the new PIDs into the data plane for packet 
forwarding. Even if the attacker obtains the PIDs to its 
target and sends the malicious packets successfully, 
these PIDs will become invalid after a certain period and 
the subsequent attacking packets will be discarded by 
the network. Moreover, if the attacker tries to obtain the 
new PIDs and keep a DDoS flooding attack going, it not 
only significantly increases the attacking cost but also 
makes it easy to detect the attacker. 

 



ISSN2394-3777 (Print)  
ISSN2394-3785 (Online)  

                                                                                                                Available online at www.ijartet.com  
 
 
                 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)  
                Vol. 5, Special Issue 9, March 2018 �

���������	��
	
��
�������������������������������� ����������������������������������������
�

          II. INTRODUCTION TO CoLoR 
 

CoLoR is a receiver-driven information centric 
network architecture that assigns unique and persistent 
content names (or service identifiers, SIDs) to content 
chunks. CoLoR assigns intrinsic secure self-certifying 
node identifiers (NIDs) to network nodes and ASes so 
that authenticating a node/AS does not require an 
external authority such as ICANN, thus improving 
security and privacy. In addition, two neighboring 
domains negotiate a PID for every inter-domain path 
between them and the PID is only known by them. The 
two domains then use the PIDs assigned to their inter 
domain paths to forward packets from one domain to the 
other. For this purpose, the routers in a domain 
maintains an inter domain routing table, which records 
the PID of each inter domain path and the border router 
that the PID originates, as illustrated at the upper right 
corner in Fig. 1. For instance, the border router in 
domain N2 connecting PID2 in Fig. 1 is R5. On the other 
hand, each domain is free to choose its preferred intra-
domain routing architecture so that a domain A uses 
IPv4for intra-domain routing while another domain B 
may use IPv6 for intra-domain routing. 

 
Furthermore, every domain in the Internet maintains a 
logically centralized (but may be physically distributed) 
resource manager (RM) used to propagate the 
reachability information of SIDs. Particularly, when a 
content provider wants to provide a content chunk to 
consumers, he registers the SID of the content chunk to 
its local RM. The local RM then registers the SID to its 
providers or peers, by using an approach similar to the 
one used in [2]. When a content consumer wants to 
obtain a piece of content, it sends out a GET message to 
its local RM. If the desired content is hosted by a local 
node, the RM forwards the GET message to that node. 
Otherwise, the RM forwards the GET message to the 
RM in a neighboring domain (toward the content 
provider) over a secure channel between the two RMs 
(because of the use of intrinsic secure identifiers). 
During this process, the PIDs of inter-domain paths from 
the content provider to the content consumer are 
determined. The content provider then sends the desired 

content to the content consumer by embedding the 
collected PIDs into headers of packets for the desired 
content. 

CoLoR offers several features,  First as an 
information-centric network architecture, routers in the 
network can locally cache the popular contents so as to 
serve nearby users, thus reducing redundant transmission 
and content retrieval delay. Second, it is easy to 
accurately, timely estimate the traffic matrices of a 
network since an ingress border router of a domain can 
know the egress border router of a packet by looking up 
the inter-domain routing table. Third, CoLoR makes it 
easy to efficiently integrate information centric 
networking and software-defined networking. In 
addition, the data plane in CoLoR is scalable. Finally, 
CoLoR offers some security benefits while avoiding 
Interest flooding attacks suffered by both routers and 
RMs in CoLoR do not maintain pending Interest tables, 
the PIDs carried in GET messages can be used to trace 
back attackers. 

CoLoR also has some drawbacks that need to 
be addressed before its real deployment in the future. 
First, carrying the NID of the content consumer and the 
desired SID in packet headers reveals user privacy. 
Second, border routers need to encapsulate/decapsulate 
outer packet headers (e.g., IPv4 headers), which makes it 
challenging to realize line-speed packet forwarding. 
Third, attackers can learn PIDs in the network and 
launch DDoS attacks in the data plane, if PIDs are static. 
As an attempt to address these drawbacks, in this paper 
we propose D-PID to prevent DDoS attacks in the data 
plane. 

  
 Why Dynamically Changing PIDs 
 

In this subsection, we explain why it is 
necessary to dynamically change PIDs in CoLoR. To 
this end, we first present two approaches to learning 
PIDs whey they are static. We then present an example 
to show that an attacker can launch DDoS attacks when 
he have learnt some PIDs in the network. 

 
1) Two approaches to learning PIDs:  
 

The first approach to learning PIDs is GET 
Luring, where an attacker uses an end host to register 
normal content names into the network, thus luring GET 
messages from content consumers. Since the 
corresponding PIDs are carried by the GET messages, 
the attacker then can learn a part of PIDs in the network. 
We call such a process as the PID learning stage in the 
rest of this paper. Fig. 2 illustrates the process of GET 
luring. 



ISSN2394-3777 (Print)  
ISSN2394-3785 (Online)  

                                                                                                                Available online at www.ijartet.com  
 
 
                 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)  
                Vol. 5, Special Issue 9, March 2018 �

���������	��
	
��
�������������������������������� ����������������������������������������
�

 Another approach to learning PIDs is botnet 
cooperation. In botnet cooperation, an attacker is 
assumed to have controlled a distributed botnet by using 
various methods such as worms or instant messaging 
applications. In particular, zombies in the botnet register 
content names to the network and send GET messages 
mutually, thus learning the PIDs in the network. Fig. 3 
illustrates botnet cooperation. 

 
 
 

 
 
 
 
 
 
 
 
2) 

Launching DDoS Attacks: 
  Once the attacker has learned a part of PIDs in 
the network, it can freely send packets along the paths 
represented by the learned PIDs. We assume that the 
attacker can compromise a number of computers along 
the paths as zombies, by using similar methods with the 
ones in the current Internet (e.g., by using worms). Note 
that this is a pessimistic assumption since the integrality 
of a content in information-centric networking is usually 
easy to verify. Then the attacker can order the zombies 
to flood a victim that should also be along the learned 
paths. We call such a process as the attacking stage. 
 
From the above descriptions, one can see that it is 
possible for an attacker to launch DDoS attacks if PIDs 
are kept secret but static. In addition, since the PIDs 
carried by data packets are popped out domain-by-
domain, the victim does not know the PIDs to the 
attackers. Accordingly, it cannot trace back them. One 
may argue that we should not pop out the PIDs when 
data packets pass through domains. In that case, 
however, an attacker can try to hide himself by 

prepending some invalid PIDs at data packets. 
Therefore, we propose to defend against DDoS attacks 
by dynamically changing PID. 
 
              

III.THE D-PID DESIGN 
 

A. Overview of D-PID 
From Sec. II-B, one can see that an attacker can learn a 
part of the PIDs used by domains in the Internet and 
launch attacks, if the PIDs are static. Thus, the core idea 
of DPID is to dynamically change the PID of an inter-
domain path. In particular, for a given (virtual) path 
connecting two neighboring domains A and B, it is 
assigned a PID and an update period TPID. The update 
period TPID represents how long the PID of the path 
should be changed since the PID is assigned. For 
instance, if path P1 in Fig. 4 is assigned PID1 at time t, 
the RMs in the two domains should negotiate a new PID 
(i.e., PID2 ) for P1 at time t + TPID and a new update 
period T�PID, by using the negotiation process described 
in Sec. III-B. At time t + TPID + T� PID, the two RMs 
will negotiate another new PID (i.e., PID3) for P1. Once 
the new PID (i.e., PID) is assigned to the path, the RMs 
in domains A and B then distribute the new PID 
(i.e.,PID2) to the routers in domains A and B (Sec. III-
C). After that, the RMs append the new PID (i.e., PID2 ) 
onto GET messages if the path is chosen to carry the 
corresponding data packets. At the same time, the border 
routers forward data packets based on the new PID (i.e., 
PID2). Since some GET packets are forwarded from 
domain A (or B) to domain B (or A) by using the old PID 
(i.e., PID1) of the path, the old PID is still valid until t + 
TPID + T�PID. Without loss of generality, we assume 
that TPID equals to T�PID in the rest of this paper. That 
is, the update period of a path is fixed. Note that the new 
PID of the path is still known only by the two domains. 
However, it is possible that a communication lasts 
longer than two update periods. Thus, when the PID of 
the path changes to PID3, ongoing communications may 
be interrupted. To address this issue, in Sec. III-F we 
propose a mechanism similar to the one that the current 
Internet collects the minimum MTU of networks so that 
a content consumer knows the minimum update period 
of PIDs along the path from a content provider to it. 
Based on this period, the content consumer then re-sends 
a GET message to the network in order to renew the 
PIDs along the path. Note also that in D-PID, all 
domains should dynamically change the PIDs of its 
inter-domain paths. Depending on its local policy, a 
domain may simultaneously (or asynchronously) change 
these PIDs. In the former case, the cost for updating the 
PIDs is fixed since a domain only needs to distribute the 
new PIDs to its border routers once every PID update 
period. In the latter case, every time the PID of an inter-
domain path is updated, the domain needs to distribute 
the new PID to its border routers.  However, the cost for 



ISSN2394-3777 (Print)  
ISSN2394-3785 (Online)  

                                                                                                                Available online at www.ijartet.com  
 
 
                 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)  
                Vol. 5, Special Issue 9, March 2018 �

���������	��
	
��
�������������������������������� ����������������������������������������
�

updating PIDs in the latter case is significantly less than 
the update cost of IP-prefixes in the Internet today. 
 
 
        IV. PROTOTYPE IMPLEMENTATION 

We verified D-PID’s feasibility and 
effectiveness by implementing it in a 42-node prototype. 
Our implementation effort was instrumental in refining 
our design, leading to several revisions. For example, we 
initially use the approach discussed in the first paragraph 
in Sec. III-B to negotiate PIDs. Below we describe our 
implementations and present results from running 
experiments on the prototype. 

 
A. Prototype Design 

The prototype has six domains (i.e., D1 - D6 ) that use 
different intra-domain routing protocols, as shown in 
Fig. 4. The six domains are inter-connected by 11 inter-
domain paths (i.e., P1 - P11)  each of which is assigned 
with a PID- prefix based on the design in Sec. III. Every 
domain has one centralized RM. Every node in the 
prototype (including the routers, the RMs, and the end-
hosts) is running on an aTCA-9300 processor blade, 
with a four-core Intel Xeon E3 1275V2 processor, an 8 
GB DDR3-1600 memory and six Intel I210 Gigabit 
Ethernet controllers. The RMs are implemented based on 
the DPDK [3] platform for fast packet processing, the 
routers are implemented by using the CLICK software 
platform [4], and the end-hosts are implemented as a 
module in Linux kernel version 2.6.35. We now present 
the implementation details of the prototype. 

 
Fig :4 

 
Fig:5 

1) RMs: Fig. 5 (a) shows the structure of the 
implemented RMs, where “X-protocol” represents the 

local routing protocol used by the domain where the RM 
locates. The Registration module is used to process 
registration messages, and it stores the reachability 
information of the registered content names into the SID 
Table. The GET module is used to process GET 
messages, and it queries the SID Table in order to 
determine the next hop for a GET message. The PID 
Table stores the currently used PIDs for the inter-
domain paths associated with the domain where the RM 
locates. To support D-PID, an entry in the PID table has 
a timer recording the time that a new PID should be 
negotiated. When the timer of a PID entry times out, the 
PID negotiation module  negotiates a new PID for the 
inter-domain path with the associated neighbor RM. 
When the negotiation completes, the PID distribution 
module distributes new PIDs to border routers in a 
domain. 
2) Border Routers: Fig. 5 (b) shows the structure of the 
implemented border routers, where “X-protocol” 
represents the local routing protocol used by the domain 
where the border router locates. The Packet Processing 
module is used to process CoLoR format packets based 
on the PIDs, and it queries the PID Table to determine 
the operation for an incoming packet (e.g., encapsulating 
the packet with an IPv4 packet header and sending it to 
another border router). The PID distribution module is 
used to process PID update messages from the RM. 
When it receives a PID update message, it adds the new 
PID into the PID table and sends an acknowledgement 
back to the RM. In addition, a PID entry in the PID table 
also has a timer recording the time that the PID should 
be removed from the PID table. Once the timer of a PID 
entry in the PID table expires, the entry is deleted from 
the PID table. 
3) End Hosts: Fig. 5(c) shows the structure of the 
implemented end hosts. We implement CoLoR as an 
independent protocol stack (as same as the TCP/IP 
stack) in the Linux kernel, and provide APIs 
(Application Program Interfaces) for applications to call 
the CoLoR socket that can send/receive GET, data, and 
registration messages. In particular, we embed several 
functionalities into the CoLoR stack in the Linux kernel. 
To collect the minimum TPID, the DATA module reads 
the MINIMUM PERIOD field when it receives a data 
packet, and sets the timer to resend GET messages for 
the associated session based on MINIMUM PERIOD. 
When the timer for the session times out, the GET 
module re-sends the GET message to the content 
provider in order to refresh the PIDs. When the source 
receives a resent GET message for an active session, the 
PID update module refreshes the PID sequence used by 
the session based on the PIDs contained in the GET 
message. 
 
                   VI. RELATED WORK 

Because of the complexity and difficulty in 
defending against DDoS flooding attacks, many 
approaches have been proposed in past two decades. A 



ISSN2394-3777 (Print)  
ISSN2394-3785 (Online)  

                                                                                                                Available online at www.ijartet.com  
 
 
                 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)  
                Vol. 5, Special Issue 9, March 2018 �

���������	��
	
��
�������������������������������� ����������������������������������������
�

main reason that DDoS flooding attacks proliferate is a 
node can send any amount of data packets to any 
destination, regardless whether or not the destination 
wants the packets. 

To address this issue, several approaches have 
been proposed. In the off by default approach two hosts 
are not permitted to communicate by default. Instead, an 
end host explicitly signals and routers exchange the IP-
prefixes that the end host wants to receive data packets 
from them by using an IP-level control protocol. The D-
PID design is similar in spirit, since D-PID dynamically 
changes PIDs and a content provider can send data 
packets to a destination only when the destination 
explicitly sends out a GET message that is routed to the 
content provider. However, there are two important 
differences. First, the off by default approach works at 
the IP-prefix granularity, but D-PID is based on an 
information-centric network architecture and works at 
the content granularity.  

Second, the IP-prefixes that an end host wants 
to receive packets from are propagated throughout the 
Internet in the “off by default” approach, which may 
cause significant routing dynamics if the allowed IP-
prefixes of end hosts change frequently. On the other 
hand, the PIDs are kept secret and change dynamically 
in D-PID. While this incurs cost since destinations need 
to re-send GET messages, the results presented in Sec. V 
show that the cost is fairly small. The capability-based 
designs also share the same spirt with “off by default” 
and D-PID. In these approaches, a sender first obtains 
the permission from the destination in order to send data 
packets to it. The destination provides the capabilities to 
the sender if it wants to receive packets from the sender. 
The sender then embeds the obtained capabilities into 
packets. Routers along the path from the sender to the 
destination verify the capabilities in order to check 
whether or not the destination wants to receive the 
packets. If not, the routers simply discard the packets. D-
PID differentiates from the capability-based approaches 
in two aspects. On one hand, communications are 
initiated by receivers in D-PID but by senders in 
capability based approaches. On the other hand, the 
capability-based approaches are vulnerable to “denial-of 
capability” attacks, where compromised computer(s) 
sends plenty of capability requests to a victim, thus 
preventing normal users to obtain the capability from the 
victim. By contrast, D-PID effectively mitigates such 
attacks because of three reasons. First, the GET 
messages carry the PIDs along the paths from the 
compromised computers to the victim. Second, the PIDs 
are negotiated by neighboring domains that can verify 
the authenticity of PIDs when they forward GET 
messages. These two reasons makes it convenient to 
trace back the attackers.  

Third, the ubiquitous in-network caching in 
CoLoR reduces the GET messages sent to the target 
victim. Named data networking (NDN) [1] is another 
approach closely related to our work. In NDN, a content 

consumer sends out an Interest packet when it wants a 
piece of content. The Interest is routed (by the content 
name) to the content provider by routers in the Internet. 
When a router forwards the Interest toward the content 
provider, it inserts an entry into its pending Interest table 
(PIT) that stores the content name and the incoming 
interface of the Interest packet. When the content 
provider receives the Interest packet, it sends the 
corresponding Data packet back to the subscriber. The 
routers then forward the Data packet back to the content 
consumer according to the PIT entries stored by them. 
Unfortunately, maintaining a PIT table at routers makes 
NDN vulnerable to Interest flooding attacks [5]. By 
contrast, routers in D-PID do not maintain any 
forwarding state.  

In addition, as stated in the previous paragraph, 
carrying PIDs along the path from attackers to the victim 
makes it convenient to trace back the attackers, thus help 
preventing them from launching attacks by sending 
plenty of GET messages. 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 VII. CONCLUSION 

In this paper, we have presented the design, 
implementation and evaluation of D-PID, a framework 
that dynamically changes path identifiers (PIDs) of 
inter-domain paths in order to prevent DDoS flooding 
attacks, when PIDs are used as inter-domain routing 
objects. We have described the design details of D-PID 
and implemented it in a 42-node prototype to verify its 
feasibility and effectiveness. We have presented 
numerical results from running experiments on the 
prototype. The results show that the time spent in 
negotiating and distributing PIDs are quite small (in the 
order of ms) and D-PID is effective in preventing DDoS 
attacks. We have also conducted extensive simulations 
to evaluate the cost in launching DDoS attacks in D-PID 
and the overheads caused by D-PID. The results show 
that D-PID significantly increases the cost in launching 
DDoS attacks while incurs little overheads, since the 
extra number of GET messages is trivial (only 1.4% or 
2.2%) when the retransmission period is 300 seconds, 
and the PID update rate is significantly less than the 
update rate of IP prefixes in the current Internet. To the 
best of our knowledge, this work is the first step toward 



ISSN2394-3777 (Print)  
ISSN2394-3785 (Online)  

                                                                                                                Available online at www.ijartet.com  
 
 
                 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)  
                Vol. 5, Special Issue 9, March 2018 �

���������	��
	
��
�������������������������������� ����������������������������������������
�

using dynamic PIDs to defend against DDoS flooding 
attacks. We hope it will stimulate more researches in this 
area. 
 
References: 
 
[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,  

kc claffy, P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang, 

“Named data networking,” ACM Comput. Commun. Rev., vol. 44, no. 

3, pp. 66 - 73, Jul. 2014. 

[2] T. Koponen, M. Chawla, B. C G. Chun, A. Ermolinskiy, K. H. 

Kim, S. 

Shenker, I. Stoica, “A data-oriented (and beyond) network 

architecture,” in Proc. SIGCOMM’07, Aug. 2007, Kyoto, Japan, pp. 

181 - 192. 

[3] Data Plane Development Kit.http://www.dpdk.eu/. 

[4] Click Router. http://www.read.cs.ucla.edu/click/. 

[5] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS&DDoS in 

named-data networking,” in Proc. IEEE ICCCN’13, Aug. 2013, 

Nassau, Bahamas. 

 

 


