
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 5, Special Issue 8, March 2018

All Rights Reserved © 2018 IJARTET 127

 Sivakumar S
1
, Thariqul Abrar M

2
, Thanesh T

3
, Balamurugan H

4
, Bharath K R

5

 Abstract— This paper reports the outline, construction and control of a two-wheel Self-Balancing robot. It aims to study

physical and dynamical characteristics that a two wheeled robot exhibits and to implement different control techniques to

improve its performance. The robot focuses to attain a balance state by itself when it is subjected to any disturbance. The design

framework contains a couple of DC gear motors and an Arduino microcontroller board; a three-axis accelerometer and

gyroscope comprises sensor with six DOF (degree of freedom) which measures the angle acts as feedback sensor along with

them a PID control algorithm is implemented.

Index Terms—Accelerometer, DC motors, Gyroscope, Robot control, PD control, PI control

I. INTRODUCTION

ELF –BALANCING ROBOT resembles inverted pendulum

design configuration which rely upon dynamic balancing

of this system. This robot basis gives good strength and

ability because of their compact size and power prerequisites.

Such robots have their applications in observation and

transportation which is an important test bed in control

education and research. Specifically, the attention is on the

electro-mechanical systems and control calculations required

to empower the robot to see and act continuously for a

powerfully evolving world.

 The essential requirement for the control of the

system needs angle measurement .A stable angle point is

marked as a set point and the strategy is to drive the DC

motors backward or forward so as to maintain stable angle

position, this working can be effectively found in Segway.

The robot uses MPU-6050. This sensor provide input value to

Arduino for all angle variations. Arduino is based on ATmega

processors an open prototyping platform which has C based

software development environment, and can be connected

with a variety of sensors. It is an emerging platform for both

education and product development, robotics etc.

 In this journal we report a project design, and control

of a two-wheel self-balancing robot. Robot has two gear

motor which is attached firmly to the robot body.The

estimation of PID parameters i.e. Kp, Ki and Kd have been

obtained and applied to the Arduino. The PID Algorithm loop

programming has been composed to change the digital data

from the accelerometer to a speeding up magnitude vector.

The magnitude is then compared to a predetermined

mathematical function to infer the angle of tilt of the

platform. The angle of tilt is then converted to angle of

rotation for the servos to act on. The experimental outcomes

are exhibited, which demonstrate that stability of the upright

position is accomplished with PID control within little tilt

angles.

II. FUNDAMENTALS

A. PID Controller:

 PID Controller is most normal control calculation

utilized as a part of robots & industrial automation over 95%

of the modern controllers are of PID integrated. PID

controllers are utilized for more exact and precise control of

different parameters such as regulation of temperature,

pressure, speed, flow and other process variables. Due to

robust and functional simplicity, these have been implemented

to plenty of industrial applications where a more precise

control is the foremost requirement. The entire idea of this

algorithm revolves around manipulating the error. The error as

is evident is the difference between the Process Variable and

the Set point. It gets the input parameter from the sensor

which is referred as actual process variable.

 It also accepts the desired output, which is referred as

set point, and then it calculates and combines the proportional,

integral and derivative responses to compute the output.

 As the name suggests, PID algorithm consists of

three basic coefficients: proportional, integral and derivative

which are varied to get optimal response. Fig. 1 represents

closed loop PID controller block diagram. The proportional

corrects instances of error, the integral corrects accumulation

of error, and the derivative corrects present error versus error

the last time it was checked. The effect of the derivative is to

counteract the overshoot caused by P and I. When the error is

large, the P and I will push the controller output. This

controller response makes error change quickly, which in turn

Self-Balancing Robot

Assistant Professor
1
, UG Student2,3,4,5

Department of Electrical and Electronics Engineering

Saranathan College of Engineering

S

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 5, Special Issue 8, March 2018

All Rights Reserved © 2018 IJARTET 128

causes the derivative to more aggressively

counteract the P and I

Fig.1 Block Diagram of PID Controller

 Robot achieves its stability by tuning the controller

with appropriate gain values (Kp, Ki, Kd).This robot uses trail

& error method for tuning which is simple but this method is

not suitable for all gain values changed step by step More

 KP-will lead to oscillation and will generate an offset

KI- will counteract the offset. Higher Value of KI implies that

the Set point will reach the PV too fast if this action is very

fast, the process variable is prone to be unsteady KD-keeps

this under control.

B. Working of PID:

Function of Controller can be explained in less

complexity with two example situation

Fig. 2 Illustration of robot subjected to perturbation

In case (i) the robot is at its initial position; maintaining its

stable state (ii) small perturbation which moves the robot from

its initial state and tilted over its right. The robot is standing up

and it is pushed towards right side. The position algorithm will

make the reference change to the opposite side (left side),

proportionally to the distanced travelled. Only the proportional

component would make the robot to reach the original

position, with a target angle of 180 degrees, but probably with

some speed, that would make it go to the left side. So, using

only proportional there are some disadvantages, the original

position would overpasses if the robot is tilted too far from the

original state, the target angle would be very large difference

that makes the robot to fall.

 Now, assume the robot is tilted too far away from the initial

state. In this situation, before the fall, the robot would get its

maximum speed to keep the new target angle. So, the solution

is to scale down this speed, by adding or removing an offset to

the target point using integral controller this component

prevents the robot from falling down, this is done by varying

the PWM value decided by the PID controller, which is the

input for both motors. In Fig. 2 Illustration of robot subjected

to perturbation, the black arrow indicates counteract of the

robot to reach its initial state after small perturbation, this

calculation has few parameters that helps for the steadiness of

the robot. Different gain values are required in different

situations since it is a trial and error method. In the tuning

process the value of gain is repeatedly adjusted until the robot

maintain its steady state. The perfect values of gain value is

obtained from this tuning.

III. WORK PROGRESS

This section focus on mechanical construction and software

configuration followed to build the robot.

Hardware Specification

The mechanical structure of the self-balancing robot is made

with precise measurement and robustness. The structure has

three segment: (i) the bottom part that carries the motors (ii) the

second part to hold the electronic materials (Arduino, sensors,

H-bridge, among others) (iii) the top part, where the user can

place objects to test the equilibrium, or use it to install more

additional electronic features.

C. Arduino Uno: Arduino Uno is a microcontroller card which

has ATmega328 (Fig. 3). It has 14 digital input-output

(6 of them can be used for PWM), 6 analog input, a 16 MHz

quartz crystal, a USB connection port, an ICSP connection and a

reset button. It also has 5V (operation voltage), 3.3V, GND and

VIN pins in the power side. The input voltage can be between

7V and 12V.USB connection is used for providing supply

voltage and to burn program coding into the board. In our

project Arduino runs with a 12V supply provided by battery

backup. Memory features, the Arduino has Flash Memory

32KB, SRAM 2KB, EEPROM 1KB. Arduino IDE complier is

used to compile the Arduino code.

Fig. 3 Arduino Uno

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 5, Special Issue 8, March 2018

All Rights Reserved © 2018 IJARTET 129

D. Motors and H-bridge: Gear motor is a DC motor in which

increase in torque decreases the speed of the motor. By using

different combination of gears, its rpm can be reduced to any

desirable value, but speed and rpm will be small when

compared to a normal dc motor. The direction of the gear

motor can be reversed by simply reversing the polarity and the

speed of the motor can be controlled by changing the voltage

level across it. Gear motor is also available in many range of

rpm. In our project we are using 300 RPM gear motor. For

interfacing motor with Arduino, dc motor driverL293D is

used. It consist of two H-bridge designed using 4-transistor

circuit that reverse the direction of rotation and control the

speed of the motor. Hence controlling two motors

simultaneously is achievable. The driver IC has 4 input pins, 4

output pins, 2 enable pins, Vcc and GND. Vcc is the supply

voltage for the driver to operate. L293D will not use this

voltage for driving the motor. For driving the motors there is

additional provision Vss to provide motor supply. Vcc is

supplied to the driver IC board using battery backup . In Fig. 4

image of L293D, Pins ENA, ENB are used to provide PWM

signal for the motors received from Arduino digital pins . Pin

IN1,IN3 are used to drive the motors in forward direction

while IN2,IN4 are used to drive the motor in reverse direction.

.

 Fig. 4 Motor driver (L-293D)

E. MPU SENSOR:

 MPU6050 is a combination of accelerometer and gyroscope

sensor which is an imperative module for this project. The

communication between IMU and Arduino is achieved with

I2C at 400 Hz. SCL and SDA connections provide I2C

communication’s logic level of VLOGIC reference pin.

VLOGIC pin is connected to 3.3V pin because 5V pin can

cause damage to the sensor. MPU6050 converts the output of

gyroscope and accelerometer to digital with 16bit ADC.MPU-

6050’s 16-bit ADC feature simplifies reading the data by

converting analog data to digital data. The output of the sensor

consists of 16-bit, which is 8-bit low and 8-bit high, for each

axle. The sensor data, which is raw data is received by the

Arduino with I2C communication. The received data is

required to be converted to g-force or angular velocity.

Fig. 5 MPU 6050 Sensor

B. Software Specification:

The project design created for this incorporates a set of

standard libraries essentially to read the sensors and to

control the motors. In these libraries, each one was tested

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 5, Special Issue 8, March 2018

All Rights Reserved © 2018 IJARTET 130

 Fig. 6 Software Loop Schematic

 The MPU sensor is calibrated by maintaining it to a

stiff position or reference position. Then using sample sketch,

the calibration value is noted which will be used as the set

point for the MPU. Once the calibration is done the values are

assigned to the main program and the motor drastically

improves in the balancing process.

IV. SYSTEM OPERATION

To adjust the robot, maintain it in stable state we don't

require the current angle of the robot we need to calculate the

rate at which it is tilting. The MPU6050 measures the angular

rate (rotational speed) along the three axes. We get the input

gyro value about the X-axis and convert them to degrees/sec

and then multiply it with the loop time to obtain the change in

the angle. We have the angular velocity of the robot from the

gyro sensor. Then multiply that value with the loop time to get

the change in angle. Then we add that value into the previous

angle to the get the current angle of the robot. In order to do

this we need to know the loop time. Hence we use the function

millis() which indicates the time taken from the start of the

program. In our project milli second is 100 then loop time will

have the difference between the Set Time & Previous

Time. Then we use the function mpu.getRotationX() to get the

angular velocity about X-axis, now the gyro holds the data in a

16bit register and we will be using the map() function to map

it to a range between (-250,250). Then Gyro Angle will be

equal to the sum off the previous angle and the Gyro

Rate times the loop time in seconds. When the robot attains its

steady state there will be deviation noticed in the robot. This

drift is caused by the gyro. So, we cannot use the gyro Alone

to measure the angle. Thus we are using both gyroscope and

the accelerometer together. Any deviation in the sensor from

the set point will drive the motor in either direction

proportional to the direction of angle deflection. The PID

manual tuning is done through step by step increment of all

the three gain values Kp, Ki, Kd. For every change in the gain

& angle the robot attains its stability by reducing its

oscillation. Tuning the controller value and calibration of

sensor will be a difficult task which need precision to attain

the stability once the tuning is done the motor will attain the

stable state

V. CONCLUSION

To make a self-balancing robot we first calculate and derive

transfer function then check its real time response. But in our

project only mini prototype is made so it is very easy to work

without any equation Also, there is not much importance for

precisions .Then the gyroscope is calibrated using library and

set point is measured by placing it in vertically above the

robot. We checked the controllability by providing various

gain to the controller algorithm. Above steps are result in

success, there were very close to build a self-balancing bot.

The easy way to tune a controller is to tune the p, i and d

parameters one at a time. The stability of the robot may be

improved if you choose a enough rpm of motor and adjust its

speed factor. So by implementation of all these concepts and

avoiding the errors that we came across, the self-balancing bot

is completely build. We can make Segway and SOHO security

as a application of self-balancing. Further work will include

by adding a RF control, thus allowing the robot to move front

and back using a remote control. Also by improving the

components of the robot to achieve higher speeds & high

torque, automatic wheel chair can be designed for physically

disabled people.

References

 [1] R. Chan, K. Stol, and C. Halkyard, “Review of modelling and

control of two-wheeled robots,” Annu. Rev. Control, 2013.

[2] Ricardo Santos Martins and Francisco Nunes “Control System for

a Self-Balancing Robot” 2017 4th

IEEE Int. Conf., 2013.

[3] H. Juang and K. Lurrr, “Design and control of a two-wheel self-

balancing robot using the arduino microcontroller board,” 2013 10th

IEEE Int. Conf., 2013.

1

100 ms

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 5, Special Issue 8, March 2018

All Rights Reserved © 2018 IJARTET 131

[4] Roland Pelayo, “How to build a self balancing

robot” maker.pro. [Online]. Available:

https://maker.pro/projects/arduino/build-arduinoselfbalancing-robot

[5] Albert Ko, H.Y.K. Lau and T.L. Lau, “SOHO security with mini

self-balancing robots,” 2005 Industrial Robot: An International

Journal 32/6

 Fig 7. Operation Block Diagram

