

REAL TIME VEHICLE LOCKING AND TRACING USING GPS AND GSM TECHNOLOGY

J.JEBASTAN VETHAMANIKAM¹, J.B.MOHAMEDABUTHAHIR²,P.PRATHEEP³ MR.G.THOMAS ALBERT M.tech...,⁴ jebaston1996@gmail.com¹ jmohamedaabu@gmail.com² pratheep96@gmail.com³ mastha13@gmail.com⁴ 1,2,3-FINAL YEAR STUDENTS(ECE) 4- Assistant Professor for ECE Department 1,2,3,4-Dr.G.U.Pope College Of Engineering

Abstract

vehicles become As more sophisticated, vehicle security systems must be stronger than ever before. A modern vehicle utilizes remote keyless entry system and Immobilizer system as the main weaponry against vehicle theft. These systems prevent unauthorized access of the vehicle to a certain extent but are not a foolproof one. Due to the simple and poor nature of these security systems, auto theft incidents worldwide are on the rise. The project proposed here aims to design a next generation auto theft prevention system by adding significant enhancements and modernizing the existing security features and thus try to overcome the above mentioned drawbacks. There is a long list of features implemented in this project which is described below.

Index Terms

Cryptographic keyless entry, gravitational lock, GPS, MEMS accelerometer, MEMS magnetometer.

Introduction

Vehicles become more sophisticated, vehicle security systems must be stronger than ever before. Specific communication standards are under process for car-to- car (C2C) and car-to-infrastructure (C2I) communication so as to allow the vehicle to communicate with neighbouring vehicles and the systems installed on the pathways. This could help vehicles sync with traffic rules (speed limit zones) as well as avoid collisions by getting prior information on breaking of vehicle moving ahead. As the vehicles become smarter, the data traffic inside the invehicle networks also increases dynamically. Some of the major problems with the existing auto theft prevention system are: • It offers no protection when the key fob is stolen. So a smart key fob sold in the market is not actually smart. • Vehicle tracking devices will not be able to locate a vehicle in GPS denied environments such as within buildings, underground and dense city regions, resulting in the loss of vehicle.

Features and its Description

The following modules are implemented in this project. **Smart Gravitational Lock**

The system is armed automatically when the driver moves away from the vehicle. It is disarmed only when a specific password is made in the hand-held wireless key fob. The 3D gesture is made in mid-air and can be reprogrammed by the user on the fly. The air gesture is recognized using a 3axis MEMS Accelerometer that senses the gravitational force exerted upon it. A stolen keyfob thus cannot be used to enter into the vehicle without performing the secret gesture. The password is stored in an external non-volatile serial EEPROM memory.

Fig 1 (Gravitational Lock)

Cryptographic Keyless Entry

If the gesture is valid the keyfob transmits a unique encrypted code that changes every time when this gesture is made. RC4 Stream Cipher Cryptographic algorithm ensures the safety of the data transmitted. The keyfob communicates with automotive vehicle unit using IEEE 802.15.4 wireless networking protocol. This prevents thieves from detecting the static codes which were used in older keyless entry systems. The wireless packets are also used to measure the proximity of the keyfob to the vehicle.

Fig 2 (Cryptographic Keyless)

Adjustable Motion Alarm Sensitivity

The vehicle unit constantly monitors the vehicle motion after being armed (locked). The integrated motion sensing subsystem measures the vehicles three dimensional position and detects any unauthorized motion if the vehicles is moved or tilted that exceeds a threshold level.

The sensitivity of this function can be adjusted on the touchscreen display GUI to effectively avoid any false warnings that are common with existing vehicle security systems. When someone tries to break into the vehicle forcibly, the alarm triggers the siren and head lamps and sends an SMS to the owner.

ISSN 2394-3777 (Print) ISSN 2394-3785 (Online) Available online at <u>www.ijartet.com</u> nds in Engineering and Technology (IJARTET)

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) Vol. 4, Special Issue 10, March 2017

Block Diagram:

(Locking)

Fig 3 (Block Diagram)

Ubiquitous Vehicle Tracking

GPS and GSM technologies enable the vehicle owners to track and monitor the vehicle with cellphone at anytime from anywhere. The important enhancement in this feature is its ability to inform the vehicle position even during a GPS outage using dead reckoning method. This is achieved with the help of Inertial Navigation Sensors that consists of а 3-axis MEMS and 3-axis MEMS Magnetometer а Accelerometer which will act as a tilt compensated compass module.

Car Finder

When the owner approaches the vehicle, the system automatically verifies the code from remote key and the vehicle emits a head light flash and horn beep to show its presence. This feature is known as car finder and it assists the owner to locate the vehicle in a parking lot where several vehicles are parked.

Fig 4 (Car Finder)

GPS Fencing

This feature restricts the vehicle movement within a particular area. For example, if the owner wants the car to move only within a particular city, once it moves out of city borders the owner would immediately receive an SMS alert as to the sscurrent location of the vehicle. The interesting feature here is the fence radius can be programmed by the user in the touchscreen display. This flexibility allows the user to set a virtual fence that can be at building level, street level, city level or state level

Fig 5 (Car Fencing)

Remote Fuel Cut-off

This feature is very useful especially in case of auto theft. If the vehicle is somehow hacked into and taken, you can send message that will slowly cut-off the fuel supply, thereby disabling the vehicle. A Servo Motor controlled valve is used to cut the fuel supply.

28-Pin SDIP and SOIC				
MEL	g 8	(Cire	gųj	t Diagram)
EMUD3/AN0/VREF+/CN2/RB0	2		27 🗖 .	AVss
EMUC3/AN1/VREF-/CN3/RB1	3		26	PWM1L/RE0
AN2/SS1/CN4/RB2	₫4		25 🗍	PWM1H/RE1
AN3/INDX/CN5/RB3	5	ds	24	PWM2L/RE2
AN4/QEA/IC7/CN6/RB4	6	2	23	PWM2H/RE3
AN5/QEB/IC8/CN7/RB5	7	8	22	PWM3L/RE4
Vss	8	8	21	PWM3H/RE5
OSC1/CLKI	9	12	20 🗖	VDD
OSC2/CLKO/RC15	10	2	19	Vss
EMUD1/SOSCI/T2CK/U1ATX/CN1//RC13	1 11	0	18	PGC/EMUC/U1RX/SDI1/SDA/RF2
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14	12		17 🗖 🛛	PGD/EMUD/U1TX/SDO1/SCL/RF3
VDD	13		16 🗖 🛛	FLTA/INT0/SCK1/OCFA/RE8
EMUD2/OC2/IC2/INT2/RD1	14		15 🗖 🛛	EMUC2/OC1/IC1/INT1/RD0

		ant	TABLI Pin AN0-A AVDD AVSS CLKI CLKO
Fig 6 (Remot	e Fuel		EMUD EMUC EMUC EMUC EMUC EMUC EMUC
	CDAM		IC1, IC
(Tracking)	GRAM	129	QEA QEB
ANTENNA GPS	MICRO CONTROLLER 18F452	EEPROM	INTO INT1 INT2 FLTA PWM1 PWM2 PWM2 PWM3 PWM3 MCLR
	Se		

Fig 7 (VTS Block Diagram) CIRCUIT DIAGRAM:

	TABLE 1-1:	PINOL	JT I/O DES	CRIPTIONS
	Pin Name	Pin Type	Buffer Type	Description
2	AN0-AN5		Analog	Analog input channels.
	AVDD	Р	Р	Positive supply for analog module.
	AVss	Р	Р	Ground reference for analog module.
	CLKI CLKO	1 0	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO In RC and EC modes. Always associated with OSC2 pin function.
	CN0-CN7	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
	EMUD EMUC EMUD1 EMUC1 EMUD2 EMUC2 EMUD3		ST ST ST ST ST ST	ICD Primary Communication Channel data input/output pin. ICD Primary Communication Channel dock input/output pin. ICD Secondary Communication Channel data input/output pin. ICD Secondary Communication Channel data input/output pin. ICD Tertiary Communication Channel dock input/output pin. ICD Tertiary Communication Channel dota input/output pin. ICD Vateriary Communication Channel data input/output pin. ICD Vateriary Communication Channel data input/output pin. ICD Vateriary Communication Channel data input/output pin.
	EMUC3	10	ST	ICD Quatemary Communication Channel clock input/output pin.
	IC1, IC2, IC7, IC8	1	ST	Capture inputs. The dsPIC30F2010 has 4 capture inputs. The inputs are numbered for consistency with the inputs on larger device variants.
1	INDX QEA QEB	 	ST ST ST	Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode.
	INTO INT1 INT2		ST ST ST	External interrupt 0 External interrupt 1 External interrupt 2
	FLTA PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H	I 0 0 0 0 0	ST 	PWM Fault A input PVM 1 Low output PVM 1 High output PVM 2 Low output PVM 2 Low output PVM 3 Low output PVM 3 High output
1	MCLR	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active low Reset to the device.
	OCFA OC1-OC2	1 0	ST —	Compare Fault A input (for Compare channels 1, 2, 3 and 4). Compare outputs.
	OSC1 OSC2	I NO	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
				mode. Optionally functions as CLKO in RC and EC modes.

All Rights Reserved © 2017 IJARTET

Pin Name Pin Buffer Type Type		Buffer Type	Description					
PGD	1/0	ST	In-Circuit Serial Programming data input/output pin.					
PGC	1	ST	In-Circuit Serial Programming clock input pin.					
RB0-RB5	NO.	ST	PORTB is a bidirectional UO port.					
RC13-RC14	6/0	ST	PORTC is a bidirectional I/O port.					
RD0-RD1	NO	ST	PORTD is a bidirectional I/O port.					
REO-RE5, RE8	1/0	ST	PORTE is a bidirectional VO port.					
RF2, RF3	VO	ST	PORTF is a bidirectional VO port.					
SCK1 SDI1 SDO1 SS1	10 - 0 -	ST ST ST	Synchronous serial clock input/output for SPI™ #1. SPI#1 Data in. SPI#1 Data Out. SPI#1 Stave Synchronization.					
SCL SDA	1/0 1/0	ST ST	Synchronous serial clock input/output for I ² C. Synchronous serial data input/output for I ² C.					
SOSCO SOSCI	0	ST/CMOS	32 kHz tow power oscillator crystal output. 32 kHz tow power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.					
T1CK T2CK	1	ST ST	Timer1 external clock input. Timer2 external clock input.					
U1RX U1TX U1ARX U1ATX	1010	ST ST	UART1 Receive. UART1 Transmit. UART1 Alternate Receive. UART1 Alternate Transmit.					
Voo	Р	-	Positive supply for logic and I/O pins.					
Vss	р	-	Ground reference for logic and I/O pins.					
WREF+	1	Analog	Analog Voltage Reference (High) input.					
WREE-	1	Analog	Anaion Wiltone Reference (Low) innut					

dePIC30F Motor Control and Power Conversion Family*

Device	Pins	Program Mem. Bytes/ Instructions	SRAM Bytes	EEPROM Bytes	Timer 16-bit	Input Cap	Output Comp/Std PWM	Motor Control PWM	A/D 10-bit 500 Ksps	Quad Enc	UART	SPITM	I ² CTM	CAN
dsPIC30F2010	28	12K/4K	512	1024	3	4	2	6 ch	6 ch	Yes	1	1	1	-
dsPIC30F3010	28	24K/8K	1024	1024	5	4	2	6 ch	6 ch	Yes	1	1	1	-
dsPIC30F4012	28	48K/16K	2048	1024	5	4	2	6 ch	6 ch	Yes	1	1	1	1
dsPIC30F3011	40/44	24K/8K	1024	1024	5	4	4	6 ch	9 ch	Yes	2	1	1	-
dsPIC30F4011	40/44	48K/16K	2048	1024	5	4	4	6 ch	9 ch	Yes	2	1	1	1
dsPIC30F5015	64	66K/22K	2048	1024	5	4	4	8 ch	16 ch	Yos	1	2	1	1
dsPIC30F6010	80	144K/48K	8192	4096	5	8	8	8 ch	16 ch	Yes	2	2	1	2

Motor Control and Power Conversion Family are shown for feature comparison.

CONCLUSION

The proposed solution describes a nonspecific person gesture recognition system by using MEMS accelerometers. The recognition system consists of sensor data collection, segmentation and recognition. Since the standard gesture patterns are generated by motion analysis and are simple features represented by 8 numbers for each gesture, the recognition system does not require a big data base and need not collect many gestures made by different people. This improves the recognition accuracy. The concept of Cryptographic keyless entry and Touch screen ignition system gives a secured and an authenticated control over the automotives. The integrated navigation solution is very competitive for vehicle

navigation with low-cost sensors. This solution can be used in all environments including degraded GPS environments which routinely occur in urban and rural canyons.

REFERENCES

 From the base paper of On Next Generation Auto Theft Prevention System
Ruize Xu, Shengli Zhou and Wen J.Li, "MEMS Accelerometer Based Nonspecific-User Hand Gesture Recognition", IEEE Sensors Journal, Vol. 12, No. 5, May 2012.
Jacques Georgy, Aboelmagd Noureldin, and Chris Goodall, "Vehicle Navigator using a Mixture Particle Filter for Inertial
Sensors/Odometer/MapData/GPSIntegrat ion", IEEE Transactions on Consumer Electronics, Vol. 58, No.2, May 2012.

[5] LPC 1311/13/42/43, 32-bit ARM Cortex-M3 microcontroller; up to 32kb flash and 8 kb SRAM; USB device; Product data sheet, Rev.6-8 June 2012.