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Abstract—Reliable and efficient optic nerve head segmentation 

is important tasks in automated retinal viewing. In a 

prescreening setting, special constraints are put on a system such 

as the one explained in this paper. The system should be 

completely automatic without any required user interaction as it 

should be able to set process large amounts of images. As the data 

in large-scale screening programs comes from various positions 

and is acquired by different operators with different equipment, 

there exists a large inconsistency in the image realization 

procedure. The global terms in the cost function are based on the 

orientation and width of the vascular pattern in the image, the 

general direction of retinal vessels at any given position in the 

image, a geometrical parametric model was proposed, 

Segmentation of the connective tissues in this area is essential to 

obtain an accurate measurement of arithmetical parameters and 

to build mechanical models. The structure tensor is used to 

characterize the predominant structure direction and the spatial 

coherence at each point, the natural lack of correspondence in 

the appearance of the retina and the fact that these images can be 

from a left or right eye and centered on different parts of the 

retina, it is clear that automatic segmentation is a challenging 

task. Automatic retinal image analysis can be complicated by the 

being there of pathology. Inconsistent image contrast or missing 

edge feature. 

 

Keywords— Active contours, optic nerve head, Image 

segmentation, screening, Photo tracking, Introduction. 

I. INTRODUCTION  

THIS paper presents an algorithm for the repeated localization 

and segmentation of the optic nerve head in retinal images. No 

user involvement is essential: the algorithm automatically 

selects the general location of the center of  optic nerve head, 

then fits a contour to the optic nerve head rim. Localization is 

accomplishby means of a simple but valuable specialized 

strain; segmentation by fitting an active contour to the optic 

nerve head rim using a specialized three phase global and 

local deformable model that exploits the specific 

characteristics of the optic nerve head’s appearance. We 

evaluate the algorithm against alternative approaches using a 

set of 100 random images drawn from diabetic screening 

programs, and present the results. In particular, the progress of 

disease and its response to treatment require the tracking of 

changes in retinal thickness along a given locus over.  
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In a prescreening setting, special requirements are put on a 

system such as the one described in this paper. The system 

should be completely automatic without any required user 

interaction as it should be able to batch process large amount 

of images. As the data in large-scale screening programs 

comes from multiple locations and is acquired by different 

operators with different equipment, there exists a large 

variability in the image acquisition process. Add to this the 

natural variation in the appearance of the retina and the fact 

that these images can be from a left or right eye and centered 

on different parts of the retina, it is clear that automatic 

segmentation is a challenging task.  

 

Optic nerve head segmentation is a necessary step in this 

structured analysis for a number of reasons. First, the optic 

nerve head can itself act as a distractor: it is a large bright 

region thatcan be mistaken (by algorithms) for gross circulate 

exudation;the high-contrast rim also causes false responses to 

linear bloodvessel filters. Second, the vessels radiate from the 

optic nerve head, so vessel tracking algorithms may start from 

there. 

Third, the optic nerve head is important in localization of the 

fovea, the central part of the retina that subserves fine vision. 

This lies at the center of a larger area, the macula. Retinopathy 

in this area, maculopathy, is associated with a high risk of 

visual loss. The macular is a dark approximately circular area, 

but the contrast is often quite small, and it may be obscured by 

exudates or blurring. Consequently a global correlational 

search often fails. The fovea is located approximately 2.5 disc 

diameters temporal to the temporal edge of the optic disc and 

between the major temporal retinal vascular arcades. These 

positional constraints can be used to identify a small search 

area for the macular, and to estimate the position if the search 
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fails, although variation in the optic disk size 

compromises the reliability of this method.  

 

 
Fig. 1.The optic nerve head. (a) Cross section. (b) A typical well-defined disk 

II. OPTIC NERVE HEAD  

A. Optic Nerve Head Appearance 

Successful segmentation of the optic nerve head requires a 

careful analysis of its appearance (see Fig. 1). It is the 

extremity of the optic nerve in the interior of the eye, and also 

the entrance and exit site of the retinal vessels [14]. The shape 

is approximately elliptical, with a vertical principal axis (width 

mm, height mm) [15]. As the nerve fibers reach the optic 

nerve head they turn and exit through the optic nerve, leaving 

a small depression (the “cup”) in the center of the nerve head. 

There is often a brighter central region, the “pallor,” which if 

present usually includes the cup. The optic disc rim is judged 

to be the inner margin of the peripapillary scleral ring, seen as 

a thin white band encircling the optic disc. In fundal images, 

the appearance varies quite substantially. The size and shape 

may vary significantly. The rim is usually visible as a bright 

boundary; the nasal side is usually less bright than the 

temporal side, and sometimes not visible at all. In some 

images, the entire optic nerve head is brighter than the 

surrounding area, so that it appears as a disk; in others the 

appearance is of a hollow ring. In either case the pallor may 

appear as a smaller, brighter disk within the optic disk. There 

may also be bright areas just outside the rim caused by 

peripapillary atrophy, either distorting the shape or forming 

concentric elliptical arcs. To complicate the issue further, 

departing vessels partially obscure the rim. The majorities 

climbs out on the nasal size and depart vertically; a smaller 

number depart nasally, with only a few fine vessels on the 

temporal side. Sometimes vessels turn at the nasal rim edge 

and run vertically, obscuring portions of the rim. A 

consequence of the nasal distribution of vessels is that the 

pallor, if visible, is mainly located to the temporal side. The 

variability in appearance misleads obvious approaches. Large 

areas of circulated exudates, which have high contrast, act as 

strong distracters for correlation-based localization 

algorithms—algorithms that work well on images of healthy 

retina may fail on a screening population. Similar problems  
TABLE I 

VISUAL CHARACTERISTICS 

 

B. Screening Data 

We have tested the algorithms using a random sample of 100 

fundal images taken from 50 patients attending the diabetic 

retinal-screening programme at City Hospital, Birmingham. 

Some of the patients had been referred from family 

practitioners, and consequently demographic data was 

unavailable for two. The mean age of the remaining patients 

was 63.7 years (s.d. 14.8 years), with 65.5% male and 34.5% 

female. The patients were from various ethnic backgrounds 

(Asian 20%, Afro-Caribbean 16%, Caucasian 50%, Unknown 

14%). 19 patients had type 2 diabetes mellitus, while the 

diabetes status was unavailable for the remaining 31. Given 

the characteristics of the regional diabetic population, type 2 

diabetes mellitus is likely to predominate in this group too. 

The images were acquired using a Canon CR6 45MNf fundus 

camera, with a field angle lens of 45, resolution 640 480. 

Images were converted to grey-scale by extracting the 

Intensity component from the HSI representation. There is 

considerable variation in the images, with many characteristics 

that can affect the algorithms; these are summarized in Table I 
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III. OPTIMIZATION 

The cost function must be minimized to find the which best 

fits to an image. This can be done in the parameter space of 

the PDM or by directly moving the points that make up in the 

image. To obtain the best results, a combination of the two 

approaches is proposed. In the parameter space a general 

optimization method is used to find the combination of model 

parameters which generates whichminimizes. As exhibits 

many local minima this is not a trivial problem. Two standard 

optimization techniques were tested, simulated annealing (SA) 

[16], [17] and Powell’s optimization method [18]. Given 

enough running timeSA is guaranteed to find the global 

minimum. However, thisproperty in combination with the 

large number of model parametersmakes it a slow algorithm. 

A local optimization methodsuch as Powell is not guaranteed 

to find a global minimum butconverges towards a local 

minimum quickly. It was found thatusing a combination of 

global and local optimization methodscoupled to an image 

space optimization gave good performancein combination 

with an acceptable running time of the algorithm.The 

proposed optimization method can be divided intothree steps; 

first parameter space optimization, image space 

optimizationand second parameter space optimization. 

 

A. Parameter Space Optimization: 

The optimization procedure starts by performing a SA 

optimization of the four major modes of the PDM. These 

modes contain most of the major model pose variations such 

as rotation, translation, and scaling. In this way the model can 

roughly find the correct position in the image. This can be 

thought of as finding a good initialization, which is very 

important for the image space optimization step. 

B. Validation Using an Artificial Dataset 

 

The lack of ground truth segmentations for the ONH datasets 

Complicates the task of validating the described algorithms. 

Manual tracing, which in this case represents a particularly 

tedious and time-consuming process, was difficult due to the 

3-D complexity of the structures involved, combined with the 

artifacts that appear in the 3-D datasets. Manual segmentation 

was deemed to lack the 3-D coherence present in the original 

structures that is necessary for generating biomechanical 

models. The possibility of using manual segmentation as 

ground truth for the segmentation algorithm was, thus, 

discarded. Instead we used artificial datasets, generated in a 

way that mimics the characteristics of the ONH datasets 

 
The process used in artificial validation dataset generation is 

as follows 

• Generation of the initial 3-D dataset containing 12 

orthogonal cylindrical beams with predetermined 

diametersthat simulate the connective tissue 

meshwork. A 3-D rendering is shown in Fig. 3. 

• Calculation of binary images corresponding to 

parallel slices of the dataset acquired in an arbitrary 

plane orientation. 

• Elimination of beam areas at random locations. At 

these locations, the beam area identified in the 

section isdeleted. 

• Assignment of intensity values to beam/background 

voxel classes in the images. Values were selected 

randomly following two Gaussian distributions. 

• Introduction of intersection illumination variations, 

by means of error factors that multiply the image 

intensity values. 

C. A Clustering Alforithm 

Since the intensity of the optic disk is much higher than 

the retinal background, a possible method in order to 
localize the optic disk is to find the largest clusters of 

pixels with the highest gray levels. For this reason, the 

pixels with the highest 1% gray levels are selected. After 

this, a clustering algorithm groups the nearby pixels into 

clusters. Initially, each point is a cluster and its own 

centroid.If the Euclidean distance between two centroids 

is less than a specified threshold ε, these clusters are 

combined to form a new one. The new centroid (cx, cy) 
is computed by means of Equations 1 and 2. 

 

n 

cx=∑  xi/n………                                   (1) 
i=0 

 

 

n 

cy=∑  yi/n………                                   (1) 
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i=0 

 

where(xi, yi) are the cluster points and n is the number of 

points in the cluster. If there are bright areas as well as 

the optic disk in the retinal image, the algorithm might 

compute several clusters.  

 

 

 
 

D. Testing and Results 

We tested our algorithm against a number of alternative 

approaches, describe below. We used a subset of 90 images, 

excluding those with no discernable optic disk, or with severe 

Cataracts to prevent meaningful segmentation. To produce a 

“gold standard” segmentation four clinicians manually 

delimited the rim; we calculate their mean contours, and the 

radial standard deviations of these contours. 

 

A. Parameter Settings 

We experimented with a wide range of parameter settings, 

Including: initial model diameter and aspect ratio, Gaussian 

 
Fig. 6. Sample Segmentations. (a) Excellent. (b) Good. (c) Fair. (d) Poor. 

Solid 

line: algorithm; dotted line: mean clinician boundary. 

TABLE III 

SUBJECTIVE CLASSIFICATION OF PERFORMANCE 

 
 

Smoothing factors, radial profile search sizes, and in the 

deformable model. 

B. Performance of the Algorithm 

 

Fig. 7(a) shows the performance graph of our final 

algorithm against a simple benchmark approach (“direct”) 

which proceeds directly from localization to local fitting 

without using the temporal lock or the vector gradient. 

Qualitatively, we define four categories (Excellent, Good, 

Fair, and Poor) containing images with disparity up to one, 

two, five, or more, respectively. Fig. 6 shows examples in 

each category. Table III summarizes performance on this 

subjective scale. 
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Fig. 7. (a) TL versus direct algorithm. (b) Interaction between De-

vascularization (DV) and vector (Vec)/magnitude (Mag) gradient versions of 

direct algorithm. (c) Temporal Lock (TL), De-vascularized Hough (DV 

Hough), and De-vascularized direct (DV). 

IV. SYSTEM DESCRIPTION 

 

The system operation divides into two parts, an adaptive phase 

and an operational phase, each outlined below. Adaptive 

Phase: The nerve head is first identified in each video field 

using a multistage, fairly computationally expensive process 

(Hough transform, dual eigenspace projection, geometric 

consistency check). The detected nerve head position serves as 

a fiducial reference to co-register all video fields processed 

during adaption, each of which has been filtered to enhance 

blood vessel structures. These registered, enhanced images are 

accumulated into a vascular distribution model for that 

particular subject. Errors in this stage are infrequent, but more 

Importantly, the errors are incoherent. That is, frequent correct 

Detections of the nerve head lead to aligned vascular 

structuresin the accumulated model, while infrequent 

erroneous detections lead to vascular structures randomly 

distributed over the model. 

Adaptive Phase Outline. 

• Image preparation: 

— separate into fields, downsample; 

— SLD spot detect, mask; 

— filter to enhance retinal structures (vessels, nerve head 

Perimeter). 

• Nerve head detection: 

— detect retinal structures; 

— Hough transforms circle extraction from retinal structures; 

— Dualeigenspace projection to evaluate circle 

neighborhoods; 

— Geometric consistency analysis of best nerve head 

candidates; 

• Register vessel contour images and accumulate vascular 

Distribution model. 

 

A. Operational Phase: 

Each incoming vessel-enhanced image is cross correlated 

with the vascular distribution model constructed in the 

adaptive phase to identify the current translation of the retina. 

This process involves only FFTs and simple peak-finding; it 

is, therefore, quite fast. 

Operational phase outline: 

     • Image preparation (as in adaptive phase); 

     • FFT-based crosscorrelation with vascular 

distributionmodel; 

     • identify peak and report relative translation. 

 

B. Adaption: Detecting Retinal Structures 

 

Once the incoming frames are separated into fields and sub 

sampled, and the SLD’s spot(s) masked, we condition the 

images with the minimum filter described in [8] to dilate the 

vessel profiles and give them more uniformly dark interiors. 

Each video field is then filtered using the pair of 1-D 

templates shown in Fig. 9; the difference in horizontal and 

vertical filter length accommodates the dominant vertical 

orientation of the vasculature. These filters respond to blood 

vessels with a positive-going peak flanked by a pair of 

negative-going pulses; they respond to the nerve head 

perimeter with a “doublet” of opposite-polarity pulses. In 

either case, local maxima in the response correspond to 

features of possible interest. We use these simple filters 

because they are fast, and they suffice. Our need is essentially 
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for single scale detection, and the image quality is 

limited so that more sophisticated approaches such as the 

Sarkar-Boyer operator [27] or that in [8] offers no advantage. 

The filter response to the masked SLD spots is a relatively 

weak, disorganized region of small peaks that is easily 

disregarded. We denote the filtered image 

 

C. Related work 

Our work differs from previous methods in that we use blood 

Vesselconvergences are the primary feature for detection.We 

test our method on 81 images showing a variety of retinal 

diseases, confusing lesions and manifestations. On this 

difficult data set, our method achieves an 89% correct 

detection rate. 

 

 

 

The system as implemented is not truly real-time, although the 

operational phase, being little more than a cross correlation, 

could easily be made to run in real time on appropriate 

hardware (e.g., a specialized DSP device). Ideally, of course, 

we would use the detected eye position to steer the SLD beam 

in real time such that the desired trajectory with respect to the 

retina was achieved even as the eye moved. The prototype 

system we have described contains the elements essential to 

such a development, but to do so would be a matter of 

considerable complexity and lies (well) beyond the scope of 

this work. 

CONCLUSION 

 We have presented algorithms for localization and 

segmentation of the optic nerve head, an important stage in 

structured analysis of the retina, which can be used in 

diagnosis of eye diseases such as diabetic retinopathy. 

Although a number of methods have been published for optic 

Nerve head localization, many are unreliable when confronted 

With images of diseased retinue including strong distracters, 

and the reliable methods tend to be quite computationally 

complex. We have presented a simple but effective algorithm 

for localization optic Nerve Head Segmentation. In This Paper 

we conclude the overview of image process using eye diseases 

can complete localization. 

 Optic nerve head segmentation by active contours has 

not been extensively examined in the past. There are 

significant problems in dealing with distracters along blood 

vessels edges and the pallor, and with the very variable 

appearance of the optic nerve head. Previously published 

techniques require careful initialization of the model position, 

preprocessing of the image using morphological operations, 

and perform badly where the rim is faint or undetectable. In 

contrast, the algorithm presented in this paper exploits specific 
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features of the optic nerve head anatomy to achieve 

good localization while avoiding distracters. The temporal 

lock algorithm exploits the natural shape of the rim to bypass 

blood vessels and avoid the pallor, and the global and local 

deformable model deals effectively with weak areas of rim 

and vessel crossings. Defining energy functions and using a 

quasi-Newton optimization strategy makes the algorithm 

reasonably fast. 
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