
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 15, March 2016

80

All Rights Reserved © 2016 IJARTET

An Efficient Degraded Reads for Map

Reduce in Heterogeneous Erasure Coded

Storage Clusters
 M.A. Mohamed Razak L. Viji

 PG Scholar, M.E., CSE (Final Year) Assistant Professor/IT

 Anna University Regional Campus, Coimbatore Velalar College of Engg and Tech, Erode

 mdrazakme@gmail.com vijibtechit20@gmail.com

ABSTRACT: Degraded reads have become performance critical operations, due to the fact that temporary errors

account for the majority of failures in modern storage systems. To boost the performance of degraded reads in

practical erasure-coded storage systems, it is necessary to take into account parallel I/Os and node heterogeneity

when performing degraded reads. The System observation is that while the tasks are running, the MapReduce job

does not completely utilize the available network resources. The proposes degraded-primary scheduling, whose

main idea is to schedule several degraded tasks in advance stages of a MapReduce job and allow them to download

data first using the unused network resources. To reduce the redundancy in the storage due to replication, erasure

coding can be used. It conducts mathematical analysis and discrete event simulation to show the performance gains

of degraded-first scheduling.

KEYWORDS: Degraded reads; boost the performance; erasure coded storage systems; MapReduce Jobs; degraded

first scheduling.

1 INTRODUCTION

Distributed storage systems, such as GFS and Azure,

have been widely adopted in enterprises to provide

large-scale storage services. Nevertheless, component

failures are frequent and diverse in large-scale storage

systems. To make sure data availability, storage

systems generally stripe data redundancy across

multiple storage nodes (or servers). Replication is

traditionally used to provide data redundancy, yet it

introduces high storage overhead and becomes a

scalability bottleneck. Alternatively, erasure coding

provides space-optimal data redundancy while

achieving the same fault tolerance as replication. It

operates by encoding data into multiple fragments,

such that any subset of fragments can sufficiently

reconstruct the original data. An erasure coding has

been widely deployed and evaluated in large-scale

storage systems by both commercial and intellectual

community.

Big data technologies are important in

providing more accurate analysis, which may guide to

more concrete decision-making resulting in better

operational efficiencies, cost reductions, and reduced

risks for the big business. To exploit the power of big

data, you would require an infrastructure that can

manage and process enormous volumes of structured

and unstructured data in real-time and it can protect

data privacy and security. There are different

technologies in the market from different vendors

including Amazon, IBM, Microsoft, etc., to handle big

data. Although looking into the technologies that

handle big data, we examine the following two classes

of technology.

Generally MapReduce pattern is based on sending

the computer to where the data resides. MapReduce

program executes in two stages, namely map stage and

reduce stage.[1]Map stage: The map or mapper’s job is

to process the input data. In general the input data is in

the form of file and is stored in the Hadoop distributed

file system. The input file is passed to the mapper task

line by line and processes the data. It creates several

small chunks of data. [2]Reduce stage: It is the

combination of the shuffle stage and the reduce stage.

The Reducer’s job is to processes the data that comes

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 15, March 2016

81

All Rights Reserved © 2016 IJARTET

from the mapper. In later processing, it produces a new

set of output, which will be stored in the HDFS.

Replication provides a easy and robust form of

redundancy to shield against most failure scenarios. It

also ease scheduling compute tasks on locally store

data blocks by providing multiple replicas of each

block. During a MapReduce job, Hadoop sends the

Map and Reduce tasks to the appropriate servers in the

cluster. The framework manages all the details of data-

passing such as issuing tasks and verifying task around

the cluster between the nodes.

2 DESIGN REQUIREMENTS

Transient failed nodes are degraded, as the unavailable

data to be reconstructed from the unused surviving

node. Our goal is reduce the redundancy in storage and

data transfer cost. The following requirements to be

assist to design efficient degraded read solution.

 Single Node Hadoop Installation: Hadoop is a

framework written in Java for running applications on

large clusters of product hardware and incorporates

features similar to those of the Google File System

(GFS) and the MapReduce computing paradigm.

HDFS is a highly fault-tolerant distributed file system

and, like Hadoop in common, designed to be deployed

on low-cost hardware. It provides high throughput

access to application data and is appropriate for

applications that have large data sets. A DataNode

stores data in the Hadoop File System. A functional file

system has in excess of one DataNode, with the data

replicated across them. The NameNode is the centre

piece of an HDFS file system. It keeps the index of all

files in the file system, and tracks where across the

cluster the file data is kept. It does not store up the data

of these file itself. The Jobtracker is the service within

hadoop that farms out MapReduce to exact nodes in the

cluster, ideally the nodes that have the data, or atleast

are in the same rack. TaskTracker is a node in the

cluster that accepts tasks Map, Reduce and Shuffle

operations from a Jobtracker. Secondary Namenode

whole function is to have a checkpoint in HDFS. It is

just a helper node for namenode.

 Erasure Coded Generating: Erasure coded

storage systems add redundancy for fault tolerance.

Specifically, a system of n disks is partitioned in to k

disks that hold data and m disks that hold coding

information. The coding information is calculated from

the data using an erasure code. For realistic storage

systems, the erasure code typically has two properties.

Earliest, it must be Maximum Distance Separable

(MDS), which means that if any m of the n disks fails,

their contents possibly recomputed from the k

surviving disks. Next, it must be systematic, which

means that the k data disks hold un-encoded data.

 An erasure coded storage system is partitioned

into stripes, which are collections of disk blocks from

each of the n disks. The blocks are partitioned into

symbols, and there is a fixed number of symbols for

each disk in each stripe. Here denote this quantity r.

The stripes perform encoding and decoding as

independent units in the disk system. Therefore, to

improve hot spots that can occur because the coding

disks may need more activity than the data disks, one

can spin the disks’ identities on a stripe-by-stripe basis.

 Recovering Failure Pattern: The proposed

expresses an virtual symbol as a function of real

symbols by solving a system of equations. However,

we note that for some failure patterns (i.e., the set of

failed nodes), the system of equations cannot return a

unique solution. A failure pattern is said to be good if

we can uniquely express the virtual symbols as a

function of the real symbols, or bad otherwise. Our

goal is to reduce the recovery bandwidth even for bad

failure patterns. We now extend our baseline approach

of proposed to deal with the bad failure patterns, with

an objective of reducing the recovery bandwidth over

the conventional recovery approach.

 We evaluate the recovery performance. For a

given (n, k), we configure our HDFS testbed with n

DataNodes, one of which also deploys the RaidNode

for striping the encoded data. We prepare a kGB of

original data as our input. By our observation, the input

size is large enough to give a steady throughput. HDFS

first stores the file with the default 3-replication

scheme. Then the RaidNode stripes the replica data

into encoded data using either RS codes or IA codes.

The encoded data is stored in n DataNodes. We rotate

node identities when we place the blocks so that the

parity blocks are evenly distributed across different

DataNodes to achieve load balancing. We fix the

symbol size at 8KB. We use the default HDFS block

size at 64MB, but for some (n, k), we alter the block

size slightly to make it a multiple of the strip size

(which is (n − k)×8KB) for IA codes. Then we

manually delete all blocks stored on t DataNodes to

mimic t failures, where t = 1, 2, 3. Since we rotate node

identities when we stripe data, the lost blocks of the t

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 15, March 2016

82

All Rights Reserved © 2016 IJARTET

failed DataNodes include both data and parity blocks.

The RaidNode recovers the failures and uploads

reconstructed blocks to new DataNodes (similar as the

unsuccessful DataNodes in our evaluation). Here, we

deploy the RaidNode in individual of the new

DataNodes for the recovery operation. We measure the

recovery throughput as the total size of lost blocks

divided by the total recovery time.

 Map Reduce Jobs: Here that a MapReduce job is

composed of four parts: Setup, Map, Reduce, and

Cleanup, among which only the task of Map involves,

degraded reads. Therefore, mainly improves the Map

tasks. It also brings benefits for execution of Reduce

tasks as the Map tasks can return the intermediate

results faster. Run three MapReduce applications: (i)

WordCount, which computes the occurrence frequency

of each word in the dataset; (ii) Dedup, which removes

duplicate lines in the dataset and outputs all unique

lines; and (iii) Grep, which extracts similar strings from

text files and counts their occurrences.

3 EXISTING SYSTEM

 There have been extensive studies on improving the

recovery performance of erasure-coded storage

systems. The existing workflow parallelization is speed

up reconstruction. Optimal recovery schemes have

been existing system proposed for different RAID-6

codes, and achieve around 25 percent of I/O savings

compared to simply reconstructing all original data.

FastDR, addresses node heterogeneity and exploits I/O

parallelism, so as to boost the performance of degraded

reads temporarily unavailable data. It incorporates a

greedy algorithm that seeks to reduce the data transfer

cost of reading surviving data for degraded reads,

whereas allowing the search of the efficient degraded

read solution to be completed in a well-timed manner.

To implement a FastDR prototype, and conduct

extensive evaluation through simulation studies on top

of testbed experiments on a Hadoop cluster with 10

storage nodes.

4 PROPOSED SYSTEM
Degraded reads have become performance critical

operations, due to the fact that temporary errors

account for the majority of failures in modern storage

systems. To boost the performance of degraded reads

in practical erasure-coded storage systems, it is

necessary to take into account parallel I/Os and node

heterogeneity when performing degraded reads.

.

Fig1. Proposed System Architecture Diagram .

The System observation is that while local tasks are

running, the MapReduce job does not entirely utilize

the available network resources. The proposed

degraded-primary scheduling, whose main idea is to

schedule some degraded tasks at in advance stages of a

MapReduce work and allow them to download data

first using the unused network resources. To reduce

the redundancy overhead owing to replication, erasure

coding can be used. It conduct mathematical analysis

and separate event simulation to show the performance

gains of degraded-first scheduling

5 SIMULATION AND RESULTS

The simulation studies entail the proposed algorithm is

implemented with hadoop. We evaluate the

computational overhead and the degraded read

performance of three approaches The degraded read

operation performs two steps: (i) reading data blocks

and parity blocks from the surviving storage nodes, and

 HDFS

Location

Hadoop Framework

 Name Node

 Secondary Node

Node

 Data Node

 Job Tracker

 Task Tracer

Raid Node

Encoding

sub-matrix

 Data Blocks

Map Reduce Job

Fast DR Client

Name Node

 Data Node

 Raid Node

 Data Node Data Node

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 3, Special Issue 15, March 2016

(ii) reconstructing the normal blocks and the lost

blocks. In our simulation studies, only the running time

of the block read part is evaluated. Our justification is

that in a distributed environment, the performance

bottleneck is due to network transmission instead of

computations.

In Fig. 1 is shows the percentage reduction of

degraded read time in triple fault tolerant codes. Here

CRS is Cauchy Reed-Solomon codes=3. In Fig. 2

represent the percentage reduction of degraded read

time in double fault tolerant codes. Table.1 is show the

difference between enumeration traverse time and

enumeration greedy algorithm traverse time. Using th

proposed algorithm to accomplish reduce the response

time and data transfer cost.

Our simulation all are conducted under

commodity under configurations.

desktop computer with Intel(R) i3 @3.2 GHz CPU and

2 GB RAM. The operating system is Ubuntu 12.04

Algorithm No of Blocks

2 4 6

FastDR 21.45 18.73 15.70

Hybird

Recovering

any Failure

Pattern

19.13 17.21 14.65

Table1.Reduction of Degraded Time vs Block

FastDR is used to addressing the node

heterogeneity and I/O parallelism. When using the

testbed experiment to evaluate the existing system

resulting is low compared than the hybrid recovering

any failure pattern. Propose a new hybrid recovery

approach for single and multi disk failure which can

reduce the number of disk reads and therefore

improves system recovery performance.

 ISSN
 ISSN

 Available online at
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

March 2016

All Rights Reserved © 2016 IJARTET

(ii) reconstructing the normal blocks and the lost

blocks. In our simulation studies, only the running time

is evaluated. Our justification is

that in a distributed environment, the performance

bottleneck is due to network transmission instead of

is shows the percentage reduction of

in triple fault tolerant codes. Here

Solomon codes=3. In Fig. 2

represent the percentage reduction of degraded read

in double fault tolerant codes. Table.1 is show the

difference between enumeration traverse time and

enumeration greedy algorithm traverse time. Using the

proposed algorithm to accomplish reduce the response

Our simulation all are conducted under

 a Linux-based

with Intel(R) i3 @3.2 GHz CPU and

Ubuntu 12.04.

No of Blocks

8 10

14.10 14.05

12.43 10.87

.Reduction of Degraded Time vs Block

FastDR is used to addressing the node

When using the

to evaluate the existing system

resulting is low compared than the hybrid recovering

Propose a new hybrid recovery

approach for single and multi disk failure which can

reduce the number of disk reads and therefore

recovery performance.

Fig2.Percentage of Degraded Read time vs Block

Algorithm Read Size

3 5 8 11

Basic 19 38 43 50

FastDR 20 31 50 56

Hybird

Recovering

any Failure

Pattern

26 39 58 63

Table2.Reductrion of Degraded Read Time vs Read

size

Here, the basic which is represents the ordinary

traverse time in distributed storage system. FastDR is

addressing the node for heterogeneity using in existing

algorithm. Hybrid recovering any failure pattern,

reduce the number of disk reads. Table 2 shows the

differentiate between Basic, fastDR and Hybrid

recovering any failure traverse time

Fig3. Percentage of De-graded Read Time vs Read

Size.

0

10

20

30

2 4 6 8

%

Reduction

of

Degraded

read time

No of Blocks

0

100

200

3 8 14 20

Data

Throughput

(MB/s)

Read Size(Block)

ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)
online at www.ijartet.com

(IJARTET)

83

of Degraded Read time vs Block .

Read Size

14 17 20 23

54 59 61 64

62 74 81 100

69 77 88 109

.Reductrion of Degraded Read Time vs Read

Here, the basic which is represents the ordinary

distributed storage system. FastDR is

addressing the node for heterogeneity using in existing

algorithm. Hybrid recovering any failure pattern,

. Table 2 shows the

differentiate between Basic, fastDR and Hybrid

failure traverse time.

Read Time vs Read

10

FastDR

Hybird

Recovering any

Failure Pattern

Basic

FastDR

Hybird

Recovering any

Failure Pattern

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 3, Special Issue 15, March 2016

In Fig3. Expresses the percentage of de

size comparision of basic, fastDR and hybrid

recovering any failure pattern. It always

throughput and response time significally.

which is request the process for accessing the data.

Block size is calculated as KB,MB,GB and TB. If the

system response the request to take time related for size

of data. Basically, requesting data is very high the

response time will be increased. Our goal is reduce the

response time and data transfer cost. Hence, the hybrid

recovering any failure pattern to access the data in

minimum response time and data transfer cost is very

low compare than existing system.

Algorithm No of Reduce Task

1 2

Basic 51.24 47.45

FastDR 27.57 17.39

Hybird

Recovering any

Failure Pattern

22.44 15.32

Table3. Number of Reduced Task vs Time(Word

Count).

The number of task reduced always time will

be decreased. Table 3, show the time by perform the

word count job. It is a job for calculating the

performance of degraded reads response time in

distributed storage system.

Fig4. Percentage of Reduced Task vs Time .

Basically, the number of task is low

to perform the request by using low response time. The

0

20

40

60

1 2 4

Time(S)

No of Reduce Task

 ISSN
 ISSN

 Available online at
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

March 2016

All Rights Reserved © 2016 IJARTET

. Expresses the percentage of de-graded read

size comparision of basic, fastDR and hybrid

recovering any failure pattern. It always shows the

time significally. Throughput,

which is request the process for accessing the data.

Block size is calculated as KB,MB,GB and TB. If the

system response the request to take time related for size

Basically, requesting data is very high the

Our goal is reduce the

response time and data transfer cost. Hence, the hybrid

to access the data in

minimum response time and data transfer cost is very

o of Reduce Task

4

45.32

12.23

10.54

Table3. Number of Reduced Task vs Time(Word

The number of task reduced always time will

show the time by perform the

word count job. It is a job for calculating the

response time in

ercentage of Reduced Task vs Time .

he number of task is low automatically

low response time. The

proposed system to reduce the disk while searchin

appropriate tasks in distributed storage system. The

main goal is reduced the data transfer cost and

degraded reads failure. Hybrid recovering any failure

pattern, accessing the data in low response time

reduce the data transfer cost compare

FastDR technique. The proposes, always to recover the

data from the surviving nodes with the help of RAID

nodes.

6 CONCLUSIONS

The proposed use of regenerating codes is

the storage is fault tolerant

bandwidth of data transfer during recovery. Propose a

system which generalizes existing optimal single

failure-based regenerating codes to support the

recovery of both single and concurrent failures. Here

theoretically show that proposed system minimizes the

reconstruction bandwidth in most concurrent failure

patterns. Our current implementation of the update

manager has a centralized design.

REFERENCES

[1] Yunfeng Zhu, Jian Lin, Patrick P. C. Lee, and

Yinlong Xu(2016),” Boosting Degraded

Reads in Heterogeneous Erasure Coded

Storage System’ IEEE Trans. Inf. Theory,

Vol. 64, No. 8, pp. 0018–9340.

[2] Blomer J, Kalfane M, Karp R, Karpinski M,

M. Luby, and Zuckerman D.(1995), ‘An

XOR-Based Erasure-Resilient Coding

Scheme’, International Computer Sciences

Institute, Berkeley, California, Technical

Report TR-95-048.

[3] Calder B, Wang J, Ogus A, and Nilakantan N

(2011), ‘Windows Azure storage: A highly

available cloud storage service with strong

consistency’, in Proc. 23

Operating Syst. pp. 143–157

[4] Dimakis A, Godfrey P, Wu Y, and K.

Ramchandran. (2010), ‘Network coding for

distributed storage systems’, IEEE Trans. Inf.

Theory, Vol. 56, No. 9, pp. 4539

[5] Esmaili K.S, Pamies-Juarez L, and Datta A.

(2013), ‘The CORE storage primitive: Cross

object redundancy for efficient data repair &

Basic

FastDR

Hybird Recovering

any Failure Pattern

ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)
online at www.ijartet.com

(IJARTET)

84

proposed system to reduce the disk while searching the

appropriate tasks in distributed storage system. The

main goal is reduced the data transfer cost and

Hybrid recovering any failure

pattern, accessing the data in low response time and

reduce the data transfer cost compare than basic and

always to recover the

data from the surviving nodes with the help of RAID

sed use of regenerating codes is providing

is fault tolerant and minimize the

bandwidth of data transfer during recovery. Propose a

system which generalizes existing optimal single-

based regenerating codes to support the

recovery of both single and concurrent failures. Here

theoretically show that proposed system minimizes the

reconstruction bandwidth in most concurrent failure

patterns. Our current implementation of the update

Yunfeng Zhu, Jian Lin, Patrick P. C. Lee, and

Yinlong Xu(2016),” Boosting Degraded

Reads in Heterogeneous Erasure Coded

IEEE Trans. Inf. Theory,

9340.

Blomer J, Kalfane M, Karp R, Karpinski M,

Zuckerman D.(1995), ‘An

Resilient Coding

International Computer Sciences

Institute, Berkeley, California, Technical

Calder B, Wang J, Ogus A, and Nilakantan N

(2011), ‘Windows Azure storage: A highly

able cloud storage service with strong

consistency’, in Proc. 23
rd

 ACM Symp.

157

Dimakis A, Godfrey P, Wu Y, and K.

Ramchandran. (2010), ‘Network coding for

distributed storage systems’, IEEE Trans. Inf.

pp. 4539–4551.

Juarez L, and Datta A.

(2013), ‘The CORE storage primitive: Cross-

object redundancy for efficient data repair &

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 15, March 2016

85

All Rights Reserved © 2016 IJARTET

access in erasure coded storage,” arXiv

preprint arXiv: 1302.5192.

[6] Greenan K, Li X, and Wylie J. (2010), ‘Flat

XOR-based erasure codes in storage systems:

Constructions, efficient recovery, and

tradeoffs’, in Proc. IEEE 26th Symp. Mass

Storage Syst. Technol., pp. 1–14.

[7] Greenan K, Miller E, and Wylie J.(2008), ‘

Reliability of Flat XOR-based erasure codes

on heterogeneous devices’, in Proc. IEEE Int.

Conf. Dependable Syst. Netw. FTCS DCC,

pp. 147–156.

[8] Huang C and Xu L. (2008), ‘STAR: An

efficient coding scheme for correcting triple

storage node failures’, IEEE Trans. Comput.,

Vol. 57, No. 7, pp. 889–901.

[9] Khan O, Burns R, and Plank J S. (2012),

‘Rethinking erasure codes for cloud file

systems: Minimizing I/O for recovery and

degraded reads’, in Proc. 10th USENIX Conf.

File Storage Technol., pp. 251–264.

[10] Li R, Lin J, and Lee P.P. (2013), ‘CORE:

Augmenting regenerating coding-based

recovery for single and concurrent failures in

distributed storage systems’, in Proc. IEEE

29th Conf. Mass Storage Syst. Technol., pp.

1–6.

[11] M. Abd-El-Malek, W. Courtright II, C.Cranor,

and G. Ganger, ‘Ursa Minor: Versatile cluster-

based storage,’ in Proc. 4th Conf. USENIX

Conf. File Storage Technol., Dec.2005, p. 5.

[12] G. Ananthanarayanan, S. Agarwal, and S.

Kandula, ’Scarlett: Coping with skewed

content popularity in MapReduce clusters’, in

Proc. ACM 6
th

 Conf. Comput. Syst., 2011, pp.

287–300.

[13] R. Bhagwan, K. Tati, Y. Cheng, S. Savage,

and G. Voelker, ‘Total Recall: System support

for automated availability management’, in

Proc. 1st Conf. Symp. Netw. Syst. Des.

Implementation, 2004, p. 25.

[14] Q. Xin, E. Miller and S. Schwarz, ‘Evaluation

of distributed recovery in large-scale storage

systems’, in Proc. 13th IEEE Int. Symp.High

Perform. Distrib. Comput., 2004, pp. 172181.

[15] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y.

Xu, and J. Lui, ‘Single disk failure recovery

for X-code-based parallel storage systems’,

IEEE Trans. Comput., vol. 63, no. 4, pp. 995–

1007, Apr. 2014.

[16] M. Zaharia, A. Konwinski, A. D. Joseph, R.

Katz, and I. Stoica, ‘Improving MapReduce

performance in heterogeneous environments’,

in Proc. 8th USENIX Conf. Operating Syst.

Des. Implementation, 2008, pp. 29–42.

[17] Y. Zhu, P. Lee, Y. Hu, L. Xiang, and Y. Xu,

‘On the speedup of single-disk failure

recovery in XOR-Coded storage systems:

Theory and practice’, in Proc. IEEE 28th

Symp. Mass Storage Syst. Technol., 2012, pp.

1–12.

[18] Y. Zhu, P. Lee, L. Xiang, Y. Xu, and L. Gao,

‘A cost-based heterogeneous recovery scheme

for distributed storage systems with RAID-6

codes’, in Proc. IEEE 42nd Annu. Int. Conf.

Dependable Syst. Netw., 2012, pp. 1–12

