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ABSTRACT

Measure theory is the branch of mathematics that
studies product measures, finite measures, signed
measures and complex measures. In mathematics,
specifically measure theory a complex measure
generalizes the concept of measure by letting it have
complex values. In other words, one allows for sets
whose size (length, area and volume) is a complex
number. Complex measure is the main technical tool
in measure theory. Every finite measure can be
treated as a complex measure. In this case the
relationship between finite measures and complex
measures for containing the topics of Radon

Nikodym Theorems and Polar representations.

DEFINITIONS

DEFINITION 1:

Let (X, S) be a measurable space and u,ybe
two finite signed measure on (X, S).

Considern: S>C defined by
nE)=pn(E) +iy(E), EES
Clearly, n(¢) =0,
Let {E,}n>1 be a sequence of Let E=U;_; E,. Then
the series Yo— ((E,) +iy(E,) ) is absolutely
convergent, and it converges to u(E) + iy(E).
Hence YooiM(Ey) is independent of any

rearrangement of the series and

we may write N(E)=Y.p=. M (Ep) .
Thus 1 is a countable additive complex

valued set function on (X, S).

DEFINITION 2:

Let (X, S) be a measure space. A set
function y: S>C is called a complex measure on
X, S).

If the following conditions are satisfied:

) n(@)=0
ii) p is countably additive in the following
sense:

if E=Up2,E, , where E;S are

pairwise disjoint sets from S, then

Y1 i(Ey) is absolutely convergent

and converges to p(E).

We write this as p(E)= Yo, n(Ey)
EXAMPLE:

Every finite signed measure can be treated
as a complex measures. The set function p=p+iy
,wherep, y are finite signed measures is a complex
measures.

Consider a complex valued

integrable functionf on (X, S, ) and define

Y(B)= [, fdu EeS
Then v is a complex measure.

In fact, the equality

Y(B)+ [, Re(du+i [, Im(f)du, E€S
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If p(E) =0, for some EE€S, then clearly

Y(E)=0 as a complex number.

DEFINITION 3:

Let (X, S,u) be a measure space and yis a
complex measure on S. We say yis absolutely
Continuous with respect to g if y(E) = 0 for all
EeSfor which u(E) = 0. We write this as y < U.

DEFINITION 4:

Let y be a complex measure on (X, S). A
complex valued function gon X is said to be y-
integrable if geL’ (X,S, yi),V1 <i <4

we write

fgdy=fgdv1—jgdvz +ifgdv3

_ifng4-

DEFINITION 5:
Let y be a complex measure on (X,S) for E €S
Define,

ly| (E) = sup (X1 [y (EDI/HEy,. . En} isa
measurable pertition of E}

The set function | y | is called the total variationof
v.

THEOREMS
THEOREM 1: [Radon - Nikodym theorem for
complex Measure]

Let (X, S,u) be a o - finite measure space
and let y be a complex measure on S such that y<<u.
Then there exists a complex value function
feL, (X, S, p) such that
Jgdy = [ fgduvgeni; Li(X,S,y;) where
Yy 1 <i <4 are finite measures on (X, S)

Proof:

Consider y1¥32,V3,Va-
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Theny; < p,V¥i=1,2, 3, 4.

By theorem,
vi(E) = fﬁdu.\# EeS
E

Let f =f; — f; +ifs —ifs
Then f is a complex valued measurable function,

feL (XS uand
Y(E) = ffdu, —VvEeS
E

It is easy to show that,
[ gdvi = [ figdn
Whenever g € L," (X,S,7:)
Let ge N, L1(X,S, i)
Then eq (1) holds for such a g and each i=1, 2, 3,4
we have,
[ gdy = [ gdy,, - [ gdy,, +
if gdys —ifgdys,
=[9(fi—fotifs—if)dn
J gdy = [gfdn.
Hence the theorem is proved.

Theorem 2:

Let ¥ be a complex measure on (X, S).
Then there exist finite measures ¥4 ¥2,¥3, ¥4 on (X,
S) such thaty; 1 vy,,v3 Ly, and E€ES,

Y(E) = v1(E) — v2(E) + iv5(E) — iva(E)

Proof:
For every EES.
Consider,

(Re(y))(E) = Real part of y(E) and

(Im(y))(E) = Imaginary part of y(E)
Then (Re (y)) and (Im(y)) are finite signed
measures on (X, S).
puty; = (Re(¥))*, v, = (Re(¥))",¥3 =
(Im(¥)* and y4 = (Im(y))”

Hence the theorem is proved.
THEOREM: 3
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Let y be a complex measure on (X, S).

Let ¥; ,1< i < 4 be the finite measures
¥1,Y2 Y3, ¥4 on (X,S). Then the following hold:-
i) IYI(E) < X, v: (B),VEES
ii) ly| is a finite measure on (X,S)
iii) lyE)<IlyIX), VvV EES
iv) yi.(E)<ly|(E),VE €S
v) L1 (X,S,lyh= Ni; LiX,S,y:)
vi) For any measure p on (X,S), ¥ < p iff
Y L wpiffly I .
Proof:
To prove (i):
It is easily proved
To prove (ii):
First note that, lyl (@) =0
To prove the countable additivity of Iyl
Let A= UjZ; Aj, where A; €S,V ]
andA; N A; = @ for i#j.
Let x < |y|(A), where x€ER is arbitrary.
Let Eq, E;...., Ey, €S be such thatE; N Ej=¢ for i#]
A=U7_, Ejand x<¥ ", |y (Ej)
Then
X<Xioq Y=t [Y(Ej N ARl =
Yz Xj=1 V(B N A/ < Ealvl(Ar)
Sincex< lyl(A) is arbitrary
We have Iyl (A) < YroqlvI(Ap)-

To prove the reverse inequality,
We may assume without loss of generality
that, ly|(4) < 4+
It is easy to see that lyI(E)<IyI(F)
Whenever ECF.
Thus Iyl (Aj) <400, V j
Let >0 be given.

Choose Vj, sets E,i €S, I<k< k;
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Such that E,é n Elj:CD fork #1
A= U¥_, E} and

. . k: .
l(A)-€/2) <32 1y (ED)
Thus Vm

€

k. .
;'n=1|}’|(Aj) =< Z;n=1§ + Z;n=1 ijzl |Y(EI{¢)|

<€+ I B v EDI+
[Y(UiZms1 4))
™ 1YI(A) <€+ Iyl (A)
Since this holds ¥ m and €> 0
We have ¥72,|y[(4)) <lyl(A)
lylis a measure.
Since Iyl (x)< ¥, yi(x) < +o.
By (i), (i1) is a finite measure.
To prove (iii):
Let E € S be fixed.
Then X = E U E€ and hence
lv(E)l < ly(E)] + [Y(EX)| < |vI(x)
ly(E)] < lvI(X)
To Prove (iv):
Let A, B be a Hahn decomposition of X with
respect to Re(y)
ThenV E € S,
y1(E) = (Re(¥))* (E)
=(Re ()(E N Ay)
=l (Re (¥))(E N Ayl
ey < |y(E nAp]|
Slv(ENA)+|y(ENB
Y1(E) < [yI(E)
Similarly,
¥2(E) = (Re(¥)) (E)
=1 (Re(¥)(E N B,)|
< |Y(ENB)|+ [y(E N4
Y2(E) < [yI(E).
That y3(E) and y,(E) are both less than ly|(E).
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v1(E) < IyI(E), VE €S5.

To Prove (v):
Let us first consider f, a non-negative simple
measurable function on (X,S).
Then using (i), we have

[ fdlyl = X7, a;lvI(E))

m 4
< Z aj (Z Yk(Ei)>
j=1 k=1
Jfdlyl < Xk=1(J dy,)
Also using (iv), Vk=1,2,3,4

[ fadvi =374, a;vi(E;)
< Yiti ol I(E)

We have,

Jfdvi < [ fdlyl

Let f be any non-negative measurable function and
{ sp}ns1 be a sequence of non-negative simple
measurable functions on X increasing  to

|fla.e |y|. f replace by s, gives
J fdlyl < 2k=1(J If|dyx)and

[ ir1dre < [1r1ap.
Thus feL1(X,S,lyl) ifffe N%_; Ly (X, S, ¥x)
Therefore, L; (X, S, ly) =N}, L, (X, S, 7))
To Prove (vi):

Finally if p is a measure and p<<y, then p
(E)=0,

implies y(E) = 0.
In Particular, for EeS fixed with p(E) =0,
We have pu (F) =0, for every set FE E, F €S,

Thus y (F) =0, VF € E and
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It follows that, ly|(E)=0.
Hence y < pu implies ly| < u
Also it follows (iv) that, y,, < |y|,Vk = 1,2,3,4
Thus v, < u,Vk
Finallyif Vk, yk<<p
It follows that, y < pu
Hence the theorem is proved.
Theorem 4:

Let (X, S, pn) be a o - finite space and let fe
L1 (X, S, p) be a complex valued function. Let y (E)

=/ i fdu, E€S. Then y is a complex measure and
V EeS Iyl (E) =fE |fldp.

In Particular, Iyl = Iyl (x) = [|f|dp = lIfll.

Proof:
Let E €S be fixed.
Then for any measurable partition

N4 Fn} of E.
Saly(F) =i | f; faul < J; Ifidu
Hence,

VI(E) < [, Ifldn

Let {s,} ,»1 be a sequence of non-negative
simple functions

Such that|s,| < 1, ¥n and sn increase
tO XE .

Define for xeX

g 0= 5,0 (22) it 0 %0
0 iff(x)=0

where f(x) denotes the complex conjugate of f(x).
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Then {g,f} .21 converges to yg |fl and

lgnfl < |flely (X, S, )

Thus by Lebesgue’s dominated convergence
theorem

we get,

fE Ifldp = limy, o, ffgndp-
Also sn being a simple
function,

Letsn =}, X XE ;s

Where {El, E2,.....En} is a
measurable partition of X.

Since s, < Xg,Sn(x) = 0Vx € X\Eand 0 < a;

INA

1,V;.
Thus
\f fsadpl = | f, fsndpt =
e [ fdm| S B [, Fanl
=X 1(E N E)

If fsndpl < |pI(E)
From (1), (2) and (3), we get

lul(E) = [;|fldp
In particular, with E = X
el = [I71]:

Corollary 5: [polar representation]

Let p be a complex measure on (X, S). Then
there exists a measurable function f such that
[f(x)|=1forallx € X,and E € S,

w(E)=, fdlul.
Proof:
Clearly, pu < |u|.
Let f be the function,
VEE §
r(E)=/, fdlnl.
Let A={x € X/|f(x)| < 1} and
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B={x €X/|f(x)| > 1}
Then by theorem,

f (1= IfDdlul = |ul(A) - f Ifldlgl = 0
A A
This implies that,
() = 0
Similarly, [,(If] - Ddlu] =
[, If\dlul - ul(B) = 0

Implies that, |u|(B) = 0
Hence |f(x)| =1forae (|u])x €X.
w(E) = [ fd|pl.
Conclusion:
We conclude that, the relationship between the
finite measures and complex measures have been

proved by the above theorems.
BIBLIOGRAPHY

1. Topicsin Algebra - LN, Herstein (second edition) John wiley and sons,
1975, Vikas publishing house (P) Ltd, New Dethi — 110002.

2. Introduction to commutative Algebras—B.F.Atiyah—1.G. Mcdonald.

3. . Graduate Texts Mathenmatics Associafive Algebras - Picard Spierce
(Springer Verlen—Newyork—Bertin)

4. Non-commutative Rings - IN. Herstein.

5. Modem Algebra — ML Santiage — Tata Mcgraw — Hill publishing

company Limited—New Delhi (2001).

1101

All Rights Reserved © 2016 IJARTET



